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Belgrade, June 20, 1976. Czechoslovakia is facing West
Germany in the final of the Euro. At the end of regular
play, the score is 2-2. The game goes to a penalty
shootout.

At 4-3 for Czechoslovakia, the German striker Uli
Hoenels blasts his shot over the bar.

Czechoslovakia can seal the win with a goal. Antonin
Panenka steps up...






Penalty shootouts are ideal objects of study
for game theorists.



PENALTY SHOOTOUTS

Clear rules, iImmediate outcomes.

Antonin Panenka scoring his infamous
penalty against West Germany, in the
Euro 1976 final.
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PENALTY SHOOTOUTS

Clear rules, iImmediate outcomes.
A lot of data available.

Two players involved.
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penalty against West Germany, in the
Euro 1976 final.




PENALTY SHOOTOUTS

Clear rules, iImmediate outcomes.
A lot of data available.
Two players involved.

Because It's so fast, decisions have
to be taken simultaneously.

Antonin Panenka scoring his infamous
penalty against West Germany, in the
Euro 1976 final.
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Penalty Shootouts

PERFECT ACCURACY

The game is played between the
Kicker and the Goalkeeper.

The Kicker chooses a direction to
shoot in: left (L) or right (R).

The Goalkeeper chooses a
direction to dive towards: left (L) or
right (R).*

With perfect accuracy on both
sides, the Goalkeeper makes a save
when matching the direction of the
Kicker’s shot.

*Everything is from the pov of the Goalkeeper.
1/2

payoffs
L(1/2) R(1/2)
L(1/2) 0, 1 1,0
R(1/2) 1,0 0,1
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Penalty Shootouts

PERFECT ACCURACY

The game is played between the
Kicker and the Goalkeeper.

The Kicker chooses a direction to
shoot in: left (L) or right (R).

The Goalkeeper chooses a
direction to dive towards: left (L) or
right (R).*

With perfect accuracy on both
sides, the Goalkeeper makes a save
when matching the direction of the
Kicker’s shot.

*Everything is from the pov of the Goalkeeper.
1/2

payoffs
L(1/2) R(1/2)
L(1/2) 0, 1 1,0
R(1/2) 1,0 0,1

5" = ((2,1/2), (1/2,1/2))
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Suppose, now, that the kicker ocasionally
misses when aiming right.



Penalty Shootouts

KICKER 75% ACCURATE TO THE RIGHT

The game is played between the
Kicker and the Goalkeeper.

The Kicker chooses a direction to
shoot in: left (L) or right (R).

The Goalkeeper chooses a
direction to dive towards: left (L) or
right (R).*

The Kicker is accurate 75% of the
time when kicking Right.

The expected number of goals
scored (and saved) feeds into the
payoffs.

*Everything is from the pov of the Goalie.
1/2

payoffs
L (q) R (1-g)
L (p) 0, 1 1,0
3 1
R (1-p) 11 0,1

2/2



The Kicker and Goalkeeper play mixed strategies sx = (p, 1 — p)

and sg = (¢,1 — q), respectively. payoffs
L (4/7) R (3/7)
L (3/7) 0, 1 1, 0
3 1
R (4/7) 1 0, 1

2/2



The Kicker and Goalkeeper play mixed strategies sk = (p,1 — p)
and sg = (¢,1 — q), respectively.

To get the mixed Nash equilibrium, we find the values of p and ¢
that make the Kicker and the Goalkeeper indifferent between their
actions:

E[UK(L,Sg)} :E[UK(R,SG)} ffO-g+1-(1—¢q)= Z -q+0-(1—gq)

L (4/7) R (3/7)
L (3/7) 0, 1 1, 0
3 1
R (4/7) 1 0,1
Pareto optimal strategies

= (@/r,9/7), (4/2,3/7))
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The Kicker and Goalkeeper play mixed strategies sk = (p,1 — p)
and sg = (¢,1 — q), respectively.

To get the mixed Nash equilibrium, we find the values of p and ¢
that make the Kicker and the Goalkeeper indifferent between their
actions:

E[UK(L,SG)} :E[UK(R,SG)} ffO-g+1-(1—¢q)= % -q+0-(1—gq)

. A
. 1

E|u6 sk, L)| = E|ue(sc,R) | iff 1-p+ 7 (1=p) = 0-p+1-(1-p)
.3

Interestingly, the Kicker now shoots to their weak side (right)
more often!

What's going on here?

L (4/7) R(3/7)
L (3/7) 0, 1 1, 0
3 1
R (4/7) 1 0,1

s = ((3/r,9/7), (42.3/1))

2/2



The goalkeeper adjusts their own strategy
by diving right less often.
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The goalkeeper adjusts their own strategy
by diving right less often. This makes it
worthwhile for the kicker to kick right
more often, despite the lower success rate.

Quite subtle. Does it hold up in practice?



IGNACIO PALACIOS-HUERTA

We collected data about 9,017 penalty
kicks during the period September 1995 -
June 2012.

Palacios-Huerta, 1. (2014). Beautiful Game Theory: How Soccer Can Help Economics. Princeton
University Press.
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IGNACIO PALACIOS-HUERTA

We collected data about 9,017 penalty
kicks during the period September 1995 -
June 2012.

Data came from professional games In
Spain, Italy, England, and other countries.

We ‘normalize’ the actions to account for
left/right footed players.

Thus, shooting Right means shooting In
the player’s ‘natural’ direction.

Palacios-Huerta, 1. (2014). Beautiful Game Theory: How Soccer Can Help Economics. Princeton
University Press.



Aggregating success rates gives us the
following numbers.



Write z, vy, z, t, for the various average success
rates of the Kicker (see payoffs on the right).
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Write z, vy, z, t, for the various average success
rates of the Kicker (see payoffs on the right).

Statistics give us the average numbers displayed
(as percentages).

L(p)| 59.11,40.89  94.1, 5.9

R(1-p)| 93.1,6.9  71.22. 28.78

Pareto optimal strategies
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Write z, v, 2, t, for the various average success
rates of the Kicker (see payoffs on the right).

Statistics give us the average numbers displayed
(as percentages).

This gives us a very specific prediction, as the
mixed Nash equilibrium.

L (q) R (1-q)
L(p)| 59.11,40.89  94.1, 5.9
R(1-p)| 93.1,6.9  71.22, 28.78

Pareto optimal strategies

s* = ((38.47%,61.53%), (40.23%, 59.77%)

2/2



Ok, so what do we actually see?



OBSERVED BEHAVIOR

On average, professional players
stay very close to the Nash
equilibrium!

@ Nash Equilibrium (predicted) (> Observed

38

Kicker left (p)

Kicker right (1-p)

Goalkeeper left (q)

Goalkeer right (1-q)

0 10 20 30 40 50 60 /0

Palacios-Huerta, I. (2014). Beautiful Game Theory: How Soccer Can Help
Economics. Princeton University Press.



IGNACIO PALACIOS-HUERTA
This Is, at the very least, encouraging for
the model.

Palacios-Huerta, I. (2014). Beautiful Game Theory: How Soccer Can Help Economics. Princeton
University Press.



Can we then say that players randomize as
required by a mixed Nash equilibrium?



IGNACIO PALACIOS-HUERTA

For this to happen, players’ choices must
be iIndependent draws from a random
process.
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process.

They should not depend on one’s own
previous play, on the opponent’s previous
play, on their interaction, or on any other
previous actions.
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IGNACIO PALACIOS-HUERTA

For this to happen, players’ choices must
be iIndependent draws from a random
process.

They should not depend on one’s own
previous play, on the opponent’s previous
play, on their interaction, or on any other
previous actions.

We can test whether individual players
satisfy this using fancy statistical tests.

Palacios-Huerta, I. (2014). Beautiful Game Theory: How Soccer Can Help Economics. Princeton
University Press.



Using a player’s penalty record, we can test
if their behavior is consistent with the
equilibrium prediction.
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WHAT WE’RE TESTING

Start with a null hypothesis:

H Players’ observed strategies match those predicted
‘8 by the mixed Nash equilibrium.
This involves testing two things:

Each player randomizes such that the opponent is D Pearson’s y?

indifferent between their available actions.

9 Players’ strategy choices are independent from their Z> Runs test
own previous choices and from their opponents.

A low p-value indicates that data strongly disagrees with equilibrium predictions.

That is, we should reject the hypothesis that the player follow the Nash equilibrium.



Here’s what the data tells us.



KICI

Table 1.2. Pearson and Runs Tests

Proportions Success Rate Pearson Tests Runs Tests
Name #Obs L R L R Statistic p-value r ®[r—-1, 5] d[r, 5]
Kickers:

Mikel Arteta 53 0.433 0.566 0.782 0.833 0.218 0.639 27 0.439 0.551
Alessandro Del Piero 25 0.345 0.654 0.736 0.805 0.344 0.557 24 0.237 0.339
Samuel E’too 62 0.419 0.580 0.769 0.805 0.120 0.728 28 0.165 0.239
Diego Forlan 62 0.419 0.580 0.769 0.805 0.120 0.728 30 0.327 0.427
Steven Gerrard 50 0.340 0.660 0.823 0.909 0.777 0.377 23 0.382 0.507
Thierry Henry 44 0.477 0.522 0.809 0.782 0.048 0.825 19 0.086 0.145
Robbie Keane 42 0.309 0.690 0.769 0.758 1.174 0.278 17 0.184 0.296
Frank Lampard 38 0.236 0.763 0.666 0.793 4113 0.042** 17 0.791 0.898
Lionel Messi 45 0.377 0.622 1.000 0.928 1.270 0.259 22 0.416 0.544
Alvaro Negredo 45 0.288 0.711 0.769 0.906 1.501 0.220 26 0.986** 0.995
Martin Palermo 55 0.381 0.618 0.714 0.735 0.028 0.865 23 0.098 0.158
Andrea Pirlo 39 0.384 0.615 0.733 0.833 0.566 0.451 20 0.505 0.639
Xabi Prieto 37 0.324 0.675 0.833 0.880 0.151 0.697 16 0.256 0.392
Franc Ribéry 38 0.500 0.500 0.789 0.736 0.145 0.702 25 0.930 0.964
Ronaldinho 46 0.456 0.543 0.952 0.880 0.753 0.385 24 0.460 0.580
Christiano Ronaldo 51 0.372 0.627 0.842 0.718 1.008 0.315 24 0.342 0.458
Roberto Soldado 40 0.400 0.600 0.937 0.750 2.337 0.126 21 0.539 0.667
Francesco Totti 47 0.489 0.510 0.782 0.833 0.195 0.658 20 0.070 0.119
David Villa 52 0.365 0.634 0.631 0.909 5.978 0.014** 18 0.010 0.022**
Zinedine Zidane 61 0.377 0.622 0.782 0.815 0.099 0.752 26 0.126 0.192
All 962 0.386 0.613 0.795 0.822 20.96 0.399
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GOALIE STATS

Goalkeepers:
Dani Aranzubia 68 0.455 0.544 0.225 0.189 0.138 0.709 29 0.062 0.098
Gianluigi Buffon 71 0.408 0.591 0.241 0.142 1.113 0.291 35 0.420 0.518
Willie Caballero 60 0.350 0.650 0.095 0.230 1.674 0.195 29 0.522 0.634
Iker Casillas 69 0.347 0.652 0.250 0.088 3.278 0.070* 32 0.414 0.520
Petr Cech 82 0.414 0.585 0.235 0.187 0.276 0.590 38 0.224 0.298
A n d a m 0 n g to p Julio César 68 0.308 0.691 0.238 0.106 2.007 0.156 34 0.840 0.900
Morgan De Sanctis 62 0.435 0.564 0.148 0.342 3.018 0.082* 34 0.700 0.783
goa l I(e e p e rS’ Va n d e r Sa r Tim Howard 67 0.402 0.597 0.222 0.225 0.000 0.978 30 0.169 0.241
. Bodo Illgner 68 0.352 0.647 0.250 0.272 0.041 0.839 33 0.547 0.650
a n d Le h m a n n fa | l th e Gorka Iraizoz 73 0.424 0.575 0.129 0.142 0.028 0.865 32 0.106 0.157
David James 69 0.391 0.608 0.185 0.238 0.270 0.603 40 0.924 0.954
te St. Oliver Kahn 58 0.379 0.620 0.227 0.138 0.747 0.387 33 0.881 0.928
Andreas Kopke 70 0.428 0.571 0.233 0.150 0.787 0.374 31 0.119 0.175
Jens Lehman 72 0.444 0.555 0.218 0.225 0.004 0.949 28 0.014 0.026*
Andrés Palop 66 0.439 0.560 0.206 0.297 0.694 0.404 34 0.498 0.597
Pepe Reina 55 0.418 0.581 0.173 0.187 0.016 0.897 31 0.778 0.852
Mark Schwarzer 55 0.381 0.618 0.238 0.264 0.048 0.825 31 0.846 0.904
Stefano Sorrentino 48 0.458 0.541 0.136 0.269 1.275 0.258 27 0.687 0.783
Victor Valdes 71 0.394 0.605 0.214 0.232 0.032 0.857 32 0.196 0.272
Edwin van der Sar 80 0.412 0.587 0.121 0.148 0.125 0.722 26 0.000 0.001**
All 1332 0.402 0.597 0.199 0.198 15.58 0.742

Palacios-Huerta, I. (2014). Beautiful Game Theory: How Soccer Can Help Economics. Princeton University Press.



IGNACIO PALACIOS-HUERTA
In 2008, | was advising Chelsea on how to
take penalties.

Palacios-Huerta, I. (2017, October 17). Beautiful Game Theory, Beautiful Economics. TEDxUDeusto, Youtube.
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Palacios-Huerta, I. (2017, October 17). Beautiful Game Theory, Beautiful Economics. TEDxUDeusto, Youtube.
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IGNACIO PALACIOS-HUERTA

In 2008, | was advising Chelsea on how to
take penalties.

Chelsea made it to the finals of the

Champions League against Manchester
Utd. The game went to penalties.

Data showed that van der Sar, the Man
Utd keeper, had a slight tendency to dive
to the right against right-footed players.

All the Chelsea players shot to his left.

Then Anelka stepped up to the plate...
https://youtu.be/z-QliFMvpgI?t=221

Palacios-Huerta, I. (2017, October 17). Beautiful Game Theory, Beautiful Economics. TEDxUDeusto, Youtube.



https://www.youtube.com/watch?v=OlNIky8n57c
https://youtu.be/z-QliFMvpqI?t=221

™). JOHN VON NEUMANN
= | These are all applications of the
Minimax theorem for zero-sum games.




A game is zero-sum when one player’s win
1s the other’s loss.



DEFINITION |
A two-player game Is zero-sum If payoffs add up to zero in every outcome.

Specifically, If Player 1 plays action x and Player 2 plays action y, then:

ur(2,y) + uz(z,y) = 0.



DEFINITION |
A two-player game Is zero-sum If payoffs add up to zero in every outcome.

Specifically, If Player 1 plays action x and Player 2 plays action y, then:

ur(2,y) + uz(z,y) = 0.

In other words, ui(z,y) = —ua(x, y).



Examples?



ROCK-PAPER-SCISSORS

Paper beats Rock, Scissors beats Paper, Rock
beats Scissors.

And same-same is a tie.

Rock (1/3)

Paper (1/3)

(1/3)

.......................................................... payoffs
Rock (1/3) Paper (1/3) (1/3)

0, 0 1,1 1, -1

1, -1 0, 0 1,1

1,1 1, -1 0, 0

s* = ((1/8,1/3,1/3), (1/s,1/3,/3))
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CHECKERS

Winner gets 1, loser gets -1. In a tie, each gets 0.
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CHECKERS

Winner gets 1, loser gets -1. In a tie, each gets 0.

With 24 pieces there are 500,995,484,682,338,672,639
(~5 x 10*°) possible positions of the board.

(1,-1) (-1,1) (0,0) (0,-1) .. (0,0) (1, -1)
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CHECKERS

Winner gets 1, loser gets -1. In a tie, each gets 0.

With 24 pieces there are 500,995,484,682,338,672,639
(~5 x 10*°) possible positions of the board.

An algorithm was found ensuring that, regardless of
what the other player does, you do not lose.

Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Miiller, M., Lake, R,, Lu, P., & Sutphen, S. (2007).
Checkers is solved. Science, 317(5844), 1518-1522. / \ \ / \

(1,-1) (1,1 (0,0 (1,-1) .. (0,0) (1,-1)
pure Nash equilibria

Complicated algorithm.

Schaeffer, ., Burch, N., Bjornsson, Y., Kishimoto, A., Miller, M., Lake, R., Lu, P., & Sutphen, S.
(2007). Checkers is solved. Science, 317(5844), 1518-1522.

mixed Nash equilibria
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So when both players play perfectly, the game pure Nash equilibria

results in a draw. Complicated algorithm.
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CHECKERS

Winner gets 1, loser gets -1. In a tie, each gets 0.

With 24 pieces there are 500,995,484,682,338,672,639
(~5 x 10*°) possible positions of the board.

An algorithm was found ensuring that, regardless of
what the other player does, you do not lose.

Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Miiller, M., Lake, R., Lu, P., & Sutphen, S. (2007).
Checkers is solved. Science, 317(5844), 1518—1522.

So when both players play perfectly, the game
results in a draw.

This is equivalent to an equilibrium in pure
strategies.

\ /\

(1,-1) .. (0,0) (1, -1)

pure Nash equilibria

Complicated algorithm.

Schaeffer, ., Burch, N., Bjornsson, Y., Kishimoto, A., Miller, M., Lake, R., Lu, P., & Sutphen, S.
(2007). Checkers is solved. Science, 317(5844), 1518-1522.

mixed Nash equilibria

Not needed, by Zermelo’s Theorem.

Zermelo, E. (1912). "Uber eine Anwendung der Mengenlehre auf die Theorie
des Schachspiels
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JONATHAN SCHAEFFER

~ Rather than starting at the opening and
moving forward, we worked backwards

from end positions.

Schaeffer, )., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., Lu, P., & Sutphen, S.
(2007). Checkers is solved. Science, 317(5844), 1518-1522.

Madrigal, A. C. (2017, July 19). How Checkers Was Solved. The Atlantic.



https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/

Z# % JONATHAN SCHAEFFER

' ) Rather than starting at the opening and
\ -~ » moving forward, we worked backwards
from end positions.

We built an enormous database of
endgames and reasoned through the
game tree.

Schaeffer, )., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., Lu, P., & Sutphen, S.
(2007). Checkers is solved. Science, 317(5844), 1518-1522.

Madrigal, A. C. (2017, July 19). How Checkers Was Solved. The Atlantic.



https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/

Z# % JONATHAN SCHAEFFER

' ) Rather than starting at the opening and
\ - » moving forward, we worked backwards
from end positions.

We built an enormous database of
endgames and reasoned through the
game tree.

We used over 200 computers, on and off,
for almost two decades to cover all
relevant branches.

Schaeffer, )., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., Lu, P., & Sutphen, S.
(2007). Checkers is solved. Science, 317(5844), 1518-1522.

Madrigal, A. C. (2017, July 19). How Checkers Was Solved. The Atlantic.



https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/

CHESS

Winner gets 1, loser gets -1. In a tie, each gets 0.

An estimated 10* - 10°° legal positions.

Unlike Checkers, Chess is not fully solved.

Based on Al evidence, it is thought that perfect (1, (1,1 0,0 (,-) .. (0,0 (1,-)
pure Nash equilibria

p[ay leads do adraw. e oo 0 800 SRS

Must exist, but we don’t know what they are
and which player they favor.

Zermelo, E. (1912). "Uber eine Anwendung der Mengenlehre auf die Theorie
des Schachspiels

mixed Nash equilibria

Not needed, by Zermelo’s Theorem.

Zermelo, E. (1912). "Uber eine Anwendung der Mengenlehre auf die Theorie
des Schachspiels
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Complementary payofts means we can
focus on only one side of the payofis.



WRITING ZERO-SUM GAMES

Since Player 2's payoffs are just the opposite
of Player 1's, we can leave them out. Al 3,43 0,0
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WRITING ZERO-SUM GAMES

Since Player 2's payoffs are just the opposite
of Player 1's, we can leave them out.

The numbers in the boxes represent Player 1's
payoffs.

Which Player 1 wants to maximize...
... and Player 2 wants to minimize.

Everything else (e.g., Nash equilibria, Pareto
optimal outcomes) stays the same.

payoffs
A B
A 3 0

Pareto optimal strategies

2/2



Consider the following way to play a game.



DEFINITION (MINMAXIMIZER)
Assume Player 11s a Minmaximizer, which means they pick the strategy that
maximizes their minimum payoff:

max min uq (81 : 32) .
S1 S92

Player 1 1s cautious, I.e., picks the strategy that gives them the best worst-case
scenario, assuming Player 2 wants to screw them over.



DEFINITION (MINMAXIMIZER)
Assume Player 11s a Minmaximizer, which means they pick the strategy that

maximizes their minimum payoff:

max min uq (81 : 32) .
S1 S92

Player 1 1s cautious, I.e., picks the strategy that gives them the best worst-case
scenario, assuming Player 2 wants to screw them over.

DEFINITION (MINMAXIMIZER)
Assume Player 2 is a Maxminimizer, which means they pick the strategy that

minimizes the maximum payoff of Player 1:

min max uq (31, 32) .
S92 S1



EXAMPLE

Suppose we allow only pure strategies.

Player 1 thinks as follows:

IfI choose A, the worst I can get is O.
IfI choose B, the worst I can get is 1.

Getting 11s better than getting o.
The max-min value Is:
max{0,1} = 1.

payoffs
A B
A 3 0
B 2 1
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EXAMPLE

Suppose we allow only pure strategies.
Player 1 thinks as follows:

IfI choose A, the worst I can get is O.
IfI choose B, the worst I can get is 1.

Getting 11s better than getting o.
The max-min value Is:
max{0,1} = 1.
Player 2 thinks as follows:

IfI choose A, the best Player 1 can do is 3.
IfI choose B, the best Player1 can dois 1.

Player 1's minimal payoffis 1.
The min-max value is:
min{3,1} = 1.

payoffs
A B
A 3 0
B 2 1

2/2



The max-min and min-max values coincide
in this case. They don’t need to.



ANOTHER EXAMPLE

Suppose we still allow only pure strategies.

The max-min value for Player 1 is:
max{—1,—1} = —1

The min-max value for Player 2 is:
min{1,1} = 1.

Heads

Tails

2/2



MINIMAXING W/ MIXED STRATEGIES

Players 1 and 2 play mixed strategies s; = (p,1 —p) and s = (¢,1 — q),
respectively.

And they want to maximize (minimize, respectively) the expected payoff:
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MINIMAXING W/ MIXED STRATEGIES

Players 1 and 2 play mixed strategies s; = (p,1 —p) and s = (¢,1 — q),
respectively.

And they want to maximize (minimize, respectively) the expected payoff:

E[ul (31, 32)] — E[ul (H, 32)] -+ E[ul (T7 32)} (1 —p) T(1-p) -1 1
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MINIMAXING W/ MIXED STRATEGIES

@ payoffs
Players 1 and 2 play mixed strategies s; = (p,1 —p) and s = (¢,1 — q), H (q) T (1-0)
respectively.
. . : H (p) 1 1
And they want to maximize (minimize, respectively) the expected payoff:
E[Ul (81,82)] :E|:’U,1 (H,Sg)] p—l—E|:fu,1('|'7 32)j| : (1 _p) T(1-p) -1 1

— (ul(H,H) 'q—l—ul(H,T) : (1—q)) . p+

(w1 (TH) - g+ (T.T) - (1-9)) - (1= p)
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. . : H (p) 1 1
And they want to maximize (minimize, respectively) the expected payoff:
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— (ul(H,H) 'q—l—ul(H,T) : (1—q)) . p+

(w (T H) - g+ w (T,T) - (1-) - (1-p)
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= 4pq — 2p — 2q + 1.
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MINIMAXING W/ MIXED STRATEGIES

Think of the expected utility as a function of p and ¢: @ payoffs
f(p,q) = 4pq — 2p — 2q + 1.
H (q) T (1-q)
We want to find max, min, f(p, q). L L
H (p) 1 1
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MINIMAXING W/ MIXED STRATEGIES

Think of the expected utility as a function of p and ¢: @

f(p,q) =4pqg —2p — 2q + 1.

We want to find max, min, f(p, q).

payoffs
H (g) T(1-q)
Player 2 wants to minimize f(p,q) by choosing ¢. To find the value for ¢, take the H (p) 1 -1
partial derivative of [ with respect to ¢:
of T (1-p) -1 1

— =4p — 2.
Jq P

The sign of the partial derivative tells us whether f is increasing or decreasing
with respectto ¢. If 4p— 2 < 0, f I1s decreasing and Player2 sets ¢ = 1. If 4p — 2 > 0,
fis increasing and Player 2 sets ¢ = 0. If 4p — 2 =0, f is constant at f(p,1/2) = 0.
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Think of the expected utility as a function of p and ¢: @

f(p,q) =4pqg —2p — 2q + 1.

We want to find max, min, f(p, q).

payoffs
H (g) T(1-q)
Player 2 wants to minimize f(p,q) by choosing ¢. To find the value for ¢, take the H (p) 1 -1
partial derivative of [ with respect to ¢:
of T (1-p) -1 1

— =4p — 2.
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MINIMAXING W/ MIXED STRATEGIES

Think of the expected utility as a function of p and ¢: @ payoffs
f(p,q) =4pg — 2p — 2¢ + 1.
H () T(1-g)
We want to find max, min, f(p, q).
Player 2 wants to minimize f(p, q) by choosing ¢. To find the value for ¢, take the H (p) ! -1
partial derivative of [ with respect to ¢:
of _, T(1-p) -1 1
oq p—=
The sign of the partial derivative tells us whether f is increasing or decreasing
with respectto ¢. If 4p— 2 < 0, f I1s decreasing and Player2 sets ¢ = 1. If 4p — 2 > 0,
fis increasing and Player 2 sets ¢ = 0. If 4p — 2 =0, f is constant at f(p,1/2) = 0.
So Player 1's worst-case payoff is:
(op—1, if0<p<if
mqi”f(p,Q) =40, if p=1/2,
| —2p+1, ifla<p<l.
Player 1 wants to maximize this worst-case payoff, which in this case happens at 2/2

p* = 1/2,



MINIMAXING W/ MIXED STRATEGIES

@ payoffs
H (q) T(1-q)
The symmetric calculation shows that Player 2’s strategy that H (p) 1 -1
minimizes Player 1's best-case expected payoff is:
T(1-p) 1 1
q- = 1/2.
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MINIMAXING W/ MIXED STRATEGIES

@ payoffs
H (q) T(1-q)
The symmetric calculation shows that Player 2’s strategy that H (p) 1 -1
minimizes Player 1's best-case expected payoff is:
T(1-p) 1 1
q- = 1/2.

Note that in this case:

max min f(p,q) = minmax f(p,q) = 0.
P q g P

2/2



Remarkably, this generalizes!



THEOREM (VON NEUMANN, 1928)
In any finite two-player zero-sum game, the maximum value a player can

guarantee by choosing a strategy (regardless of the opponent’s strategy) is
equal to the minimum value the opponent can force upon them:

max min [t | uq (31,32) — min max It | uq (31,32)
s1 sz L i s2  S1 I i

von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100, 295-320.



The common value for the best worst-case
and the worst best-case is also called the
value ot the game.



N JOHN VON NEUMANN

§ 1 |thought there was nothing worth
A8y publishing until the Minimax Theorem
was proved.




THEOREM
The maxmin and minmax strategies form a Nash equilibrium.



