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RATEGIC MINDS: THE GAME TREORY OF COOPERATION, COORDINATION AND COLLABORA

2D GAMES, WITR AND WITROUT DISCQ
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Prisoner's Dilemma in the 50's, while working for the
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Prisoner's Dilemma in the 50's, while working for the
RAND corporation.

MELVIN DRESHER

Amidst concern about nuclear war and political
Instability, we devised a little game to show that the Nash
equilibrium sometimes makes strange predictions.

MERRIL FLOOD
We made two of our friends, AA and JW, play the game
over 100 times, and recorded their reactions.

MELVIN DRESHER

For all the confusion, mutual cooperation occurred 60 out
of the 100 trials.

Poundstone, W. (1993). Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the Bomb.
Anchor Books.




Game AA JW AA’s comments JW’s comments

1 D C JWwill play [Dl—  Hope he’s bright.
sure win. Hence if I
play [C]—I lose.

2 D C  Whatis he doing?!! He isn’t but maybe

he’ll wise up.

3 D D  Trying mixed? Okay, dope.

4 D D  Has he settled on Okay, dope.

[D]?

5 C D  Perversel It isn’t the best of all

possible worlds.

6 D C I'm sticking to [D] Oh ho! Guess I'll
since he will mix for have to give him
at least 4 more another chance.
times.

7 D C Cagey, ain’t he?

Well . . .

8 D D In time he could
learn, but not in ten
moves so:

9 D D  IfI mix occasionally,

he will switch—but
why will he ever
switch from [D]?
10 D D Prediction. He will I can guarantee

stick with [D] until 1
change from [DI]. I
feel like DuPont.

myself a gain of 5,
and guarantee that
Player AA breaks

PRISONER’S DILEMMA 109

even (at best). On
the other hand, with
nominal assistance
from AA, I can
transfer the
guarantee of 5 o
Player AA and make
10 for myself, too.
This means I have
control of the game
to a large extent, so
Player AA had better
appreciate this and
get on the
bandwagon.

With small amounts
of money at stake, I
would (as above) try
(by using [C]) to coax
AA into mutually
profitable actions.
With large amounts
at stake I would play
(D] until AA
displayed some
initiative and a
willingness to invest
in his own future,
One play of [C] by
AA would change me
from [D] to [C],
where I would
remain until bitten.

On the last play, it
would be
conservative for me
to switch to [D], but I
wouldn’t do so if the
evidence suggested
that AA was a nice
stable personality

Game AA JW AA’s comments JW’s comments
and not in critical
need of just a little
extra cash.

11 D C Probably learned by
now.
12 C C I'll be damned! But
I'll try again.
13 cC C That's better.
14 C C Ha!
15 cC ¢C (bliss)
16 D C
17 C D The stinker.
18 C D He's crazy. I'll teach
him the hard way.
19 D D I'm completely Let him suffer.
confused. Is he trying
to convey information
to me?
20 D D
21 i . Maybe he'll be a good
boy now.
22 C C Always takes time to
learn.

Poundstone, W. (1993). Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the Bomb. Anchor Books.



Are AA and JW irrational?



MERRIL FLOOD
What do you say to that, John?!

JOHN NASH
000




MERRIL FLOOD
What do you say to that, John?!

JOHN NASH
You know, playing the Prisoner’s Dilemma one time is
not the same as playing it 100 times.

Playing it over and over again is like playing a
different, multi-round game.

In the one-shot game there’s no room for things like
loyalty, trust, threats, or revenge.

But in the iterated version, these things can be
relevant!



This might give us a way out of the pessimistic outlook of the
Prisoner’s Dilemma.

Does the equilibrium change if the game is played repeatedly?



PERFECT-INFORMATION EXTENSIVE GAMES

So far we've been assuming that players
make moves simultaneously, in ignorance
of the other players’ actions.

But, of course, some games are played
over rounds.

In perfect-information extensive-form
games, players take turns deploying their
actions.

And are aware of actions taken at
previous rounds: perfect memory!



The Ultimatum Game 44

Player 1 has two euros, which it has
to divide between themselves and
player 2.

Player 1 makes an offer, which player
2 can accept or reject.

If player 2 accepts, money is divided
according to player 1's offer.

If player 2 rejects, no one gets
anything.

0, 2

Pareto optimal strategy profiles

pure Nash equilibria

mixed Nash equilibria

2/2



2.0

0, 0

yes

1,1

0, 0

0, 2

0, 0

yyy ~ yyn yny ynn  nyy nyn  nny  nnn
2,0 2,0 20 20 00 00 0,0 00
1,1 1,1 0,0 00 1,1 1,1 0,0 0,0
0,2 0,0 0,2 00 0,2 00 0,2 00




Nash equilibria and everything
else 1s computed with respect to
the induced normal-form game.
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The Ultimatum Game 44

Player 1 has two euros, which it has
to divide between themselves and
player 2.

Player 1 makes an offer, which player
2 can accept or reject.

If player 2 accepts, money is divided
according to player 1's offer.

If player 2 rejects, no one gets
anything.

Pareto optimal strategy profiles
everything except (0, O)

pure Nash equilibria

see above

mixed Nash equilibria
too lazy to figure out

2/2
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What makes (2-0, nnn) a Nash equilibrium
depends crucially on what Player 2 does at all
nodes: including ‘irrelevant’ ones.

20 0,0 1,1 0,0 0,2 0,0

Think: why does Player1 not want to deviate?

4

Because Player 2 always says no, so there’s no yyy ~yyn yny ynn  nyy nyn  nny  nnn
point!




In general, we can always transform an extensive-information
game with perfect information into a game in normal form.



Enter extensive-form games with imperfect information.



ADDING UNCERTAINTY: A DASHED LINE

Player 2 does not know what action
Player 1 has actually taken.




Now we can finally get back to the Prisoner’s Dilemma!



Cooperate

Defect

Cooperate Defect
2.2 0, 3
3,0 1,1

Cooperate Defect

Defect Defect

Cooperate Cooperate

2,9 0, 3 3,0 1, 1



Cooperate

Cooperate Defect
Cooperate 2, 2 0,3 :: a
Defect 3,0 1,1

Cooperate

2,2
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Cooperate Defect

Defect Defect

Cooperate Cooperate
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Cooperate

Defect

Cooperate Defect
2.2 0, 3
3, 0 1,1

Cooperate Defect

Defect Defect

Cooperate Cooperate

2,9 0, 3 3,0 1, 1



Now we can even model the iterated Prisoner’'s Dilemma!



A finite number of rounds.

Like, say, two.



lterated Prisoner’s Dilemma Mm

2 iterations

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

Cooperate,

Cooperate,
Dl

fect Cooperate, Defect Cooperate,

3,3 2,5 0,6 3,3 1,4 5,2 3,3 6,0 4,1 3,3 1,4 4,1 2,

strictly dominant strategies
e

Pareto optimal strategy profiles
e

pure Nash equilibria
e

mixed Nash equilibria
e
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2 iterations

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

Cooperate,
Dl

Cooperate,

4,4

Coaperats

Defect Cooperate Defect Cooperate
ey Defect Ce D

fect Cooperate, Defect Cooperate, Defect Cooperof / efect Coop / "
2,6 5,2 3,3 2,6 0,6 3.3 1,4 5,2 3.3 6,0 4,1 3,3 1,4 4,1 2,2

strictly dominant strategies
Q

Pareto optimal strategy profiles
e

pure Nash equilibria
2

mixed Nash equilibria
e




Two Rounds of the
Prisoner’s Dilemma

Cooperate Defect
RN I.).e.F; .C.r ................................................................ COO pe .r.c.f.e ........ N
Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect
.............. a a
Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect

44 2.5 52 3.3 25 0,6 33 1,4 52 33 60 41 3.3 1.4 4.1 2.2



lterated Prisoner’s Dilemma Mm

2 iterations

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

CC

C,D

D, C

payoffs

D,D

212242

24+3,2+0

3420+ 2

3+3,0+0

2+0,2+3

241,24+ 1

3+0,0+3

341,041

04+23+2

0+3,3+0

142,142

1+3,1+0

0+0,3+3

0+1,3+1

1+0,1+3

1+1,1+1

strictly dominant strategies

e

Pareto optimal strategy profiles

¢

pure Nash equilibria

¢

mixed Nash equilibria

¢
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So how do we analyze the 2-round Prisoner’s Dilemma?



lterated Prisoner’s Dilemma Mm

2 iterations

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

Pareto optimal strategy profiles
see above

pure Nash equilibria
e

mixed Nash equilibria
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2 iterations

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

Pareto optimal strategy profiles
see previous

pure Nash equilibria
(D, D), (D, D))

mixed Nash equilibria
e
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lterated Prisoner’s Dilemma Mm

2 iterations

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

Pareto optimal strategy profiles
see previous

pure Nash equilibria
(D, D), (D, D))

mixed Nash equilibria
none

2/2




Again, the only Nash equilibrium is to always defect, for
both players.

Note that we'd get the same conclusion for k > 2 rounds.



Well that was pointless.



Quick recap.



In the Prisoner’s Dilemma, the unique Nash equilibrium
requires both players to defect.

We often observe cooperation in the real world.

What should we add to our model to make cooperation
rational?

Maybe If players acknowledge they are in a repeated
relationship.

Unfortunately, if the Prisoner’s Dilemma is repeated a
commonly known finite number of times, the Nash
equilibrium is still defect at every round.



ROBERT AUMANN
What if the game is played for an infinite number of times?

As in, we don’t have a fixed number k of rounds at
which the game ends.



Players

. A — {1,
terated Prisoner’s Dilemma [El N=11.2)
infinitely iterated
Two players play the regular Strategies of Player1
Prisoner’s Dilemma: C.C..).(CD,..),..
C D
cl 2.2 0,3 Strategies of Player 2

(CC .., ([CD,...),..

D| 3,0 1,1

but an infinite number of times. Payoffs (aka utilities)

The final payoffs are the sum of the In general, infinite sums.

payofts from each round. For instance, if both players always cooperate,

payoffs are infinite series: (2, 2, ...), and the
final payoffis:

2424+ =0




ROBERT AUMANN
Let’s also add a discount factor 6, with 0 < 6 <1, which
works as follows.

At every new round, the payoffs are multiplied by 6.



ROBERT AUMANN
Let’s also add a discount factor 6, with 0 < 6 <1, which
works as follows.

At every new round, the payoffs are multiplied by 6.

So for 6 = 0.8, $100 today is worth 0.8 « $100 = S80
tomorrow, and 0.8 « $80 = $64 in two days.



lterated Prisoner’s Dilemma

infinitely iterated, with discount factor, 0 < § < 1

Two players play the regular
Prisoner’s Dilemma:

C D

Cl 22 0, 3

D| 3,0 1,1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor 6.

—
-
| I
' i 10
N ——
l. L[]
H mlm
= I

Players
N={1,2

Strategies of Player1
(C,C,..),(C,D,..), ..

Strategies of Player 2
(C.C,..),(C,D,..), ..

Payoffs (aka utilities)

In general, infinite sums.

Forinstance, if both players always cooperate,
payoffs are infinite series: (2, 20, 26%, ...), and
the final payoffis:

2425 +25% + ...



In general, for infinite sums we can use the following
Identity, for 0 < x < 1:

l+z+a24 - =2

1l—=x




lterated Prisoner’s Dilemma

infinitely iterated, with discount factor, 0 < § < 1

Two players play the regular
Prisoner’s Dilemma:

C D

Cl 22 0, 3

D| 3,0 1,1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor 6.
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Players
N={1,2

Strategies of Player1
(C,C,..),(C,D,..), ..

Strategies of Player 2
(C,C,..),(C,D,..), ..

Payoffs (aka utilities)

In general, infinite sums.

Forinstance, if both players always cooperate,
payoffs are infinite series: (2, 20, 26%, ...), and
the final payoffis:

2426420 +...=2(1+6+6>+...)



What does the discount factor 6 stand for?



INTERPRETING THE DISCOUNT FACTOR

Patience
You're more patient the less you mind waiting for something valuable,
rather than receiving it immediately.

For a discount factor 6 you value $1, received t rounds from now, at $1- 64

This is less than S$1, because 0 < 6 < 1.

As 6 gets closer to 1, the agent is more patient.



INTERPRETING THE DISCOUNT FACTOR

Patience

You're more patient the less you mind waiting for something valuable,
rather than receiving it immediately.

For a discount factor 6 you value $1, received t rounds from now, at $1- 64
This is less than S$1, because 0 < 6 < 1.

As 6 gets closer to 1, the agent is more patient.

Uncertainty about the future

You might prefer $1today to $1tomorrow because you're not sure
tomorrow will even come.

6 can be the probability that there isa round t + 1, if round t has
happened.

S1- 6tis then the expected payoff at round t.



ROBERT AUMANN
Consider, now, the following strategy, called Grim Trigger.

Start by cooperating. If the other player defects at some
round t, switch to defecting forever, i.e., at every round t’ > t.



Let’s look at a run of the game when one player plays Grim
Trigger.



EXAMPLE RUNS WITH GRIM TRIGGER

lterated Prisoner’s Dilemma [Fl&
infinitely iterated, with discount factor 0 < § < 1
Si;rategy of Player1 Two players play the regular
Grim Trigger Prisoner’s Dilemma:
C D
Strategy of Player 2 cl 22 0,3

Start by cooperating; defect once at some random round t >1 ol 30 11

but an infinite number of times.

Samplerun
actions taken The final payoffs are the sum of the
Player 1 C,C,C, D, D, D, ... payoffs from each round, taking into

account the discount factor §.
Player2 C,C,D,C,C,C, ...




EXAMPLE RUNS WITH GRIM TRIGGER

lterated Prisoner’s Dilemma [Fl&
infinitely iterated, with discount factor 0 < § < 1
Si;rategy of Player1 Two players play the regular
Grim Trigger Prisoner’s Dilemma:
C D
Strategy of Player 2 cl 22 0,3
Start by cooperating; defect once at some random round t >1 ol 30 11
Sample run (4 7 but an infinite number of times.
actions taken / The final payoffs are the sum of the

£
Player 1 C,C,C,D,D,D, ...

Player2 C,C,D,C,C,C, ...

u&%»

payoffs from each round, taking into
account the discount factor 6.




EXAMPLE RUNS WITH GRIM TRIGGER

Strategy of Player1
Crim Trigger
Strategy of Player 2
Start by cooperating; defect once at some random round t > 1
AMAE E
Sample run 73
actions taken / payoffs total payoff

—_——

Player 1 C, C, C, D,D,D, .. 2,20,00%,36%,36%,36%,... the infinite sum
Player 2 C,C, D, C, C, C, ... 2,26,36%,06° 004 06°,... the infinite sum

u&%»

lterated Prisoner’s Dilemma &

infinitely iterated, with discount factor 0 < § < 1

Two players play the regular
Prisoner’s Dilemma:

C D

Cl 2.2 0, 3

D| 3,0 1,1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor §.




And when both players use Grim Trigger?



EXAMPLE RUNS WITH GRIM TRIGGER

lterated Prisoner’s Dilemma &

infinitely iterated, with discount factor 0 < § < 1

Si;rategy of Player1 Two players play the regular
Grim Trigger Prisoner’s Dilemma:

C D
Strategy of Player 2 cl 22 0,3
Crim Trigger ol 30 L
sample run but an infinite number of times.

actions taken payoffs total payoff The final payoffs are the sum of the

Player 1 C,C.C,C,C,C, .. 2,256,252, .. 2 (1/1-5) payoffs from each round, taking into

account the discount factor §.
Player2 C,C,C,C,C,C, ... 2,26,25%,... 2 (Y1-6)




Does any agent have an incentive to deviate from Grim
Trigger?



Player 2 deviates by always defecting

lterated Prisoner’s Dilemma &

infinitely iterated, with discount factor 0 < § < 1

Si;rategy of Player1 Two players play the regular
Grim Trigger Prisoner’s Dilemma:

C D
Strategy of Player 2 cl 22 0,3
Deviate, starting at first round ol 3 -
sample run but an infinite number of times.

actions taken payoffs total payoff The final payoffs are the sum of the

Player | C,D. D, D, D, D, .. 0..02.5%, ... 5/(1_s) payoffs from each round, taking into

account the discount factor §.
Player2 D,D,D,D, D, D, ... 3,0,6%,6°, ... 2+ 1/(1-9)




Player 2 deviates by always defecting

i ‘s Dilemma P4
lterated Prisoner i

infinitely iterated, with discount factor 0 < § < 1

Strategy of Player1
Grim Trigger

Two players play the regular
Strategy of Player 2 Prisoner’s Dilemma:

Deviate, starting at first round

C D
Sample run
actions taken payoffs total payoff C 2, 2 O, 3
Player 1 C,D,D,D,D,D, ... 0,4,6283,... 3/(1-5)
2065, 2+ 1/a-
Player2 D,D,D,D,D,D, ... 3,6,0%,0°, /(-9) D 3’ 0 17 1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor §.




Player 2 deviates by always defecting

i ‘s Dilemma
lterated Prisoner

infinitely iterated, with discount factor 0 < § < 1

Strategy of Player1 Strategy of Player1
Grim Trigger Grim Trigger
£ £ Two players play the regular
. I . .
Strategy of Player 2 Strategy of Player 2 Prisoner’s Di |emmo y
Deviate, starting at first round Grim Trigger
C D

Sample run Sample run

actions taken payoffs total payoff actions taken payoffs total payoff C 2, 2 O, 3
Player 1 C,D,D,D,D,D, ... 0,4,6283,... §/(1-5) Playjer 1 C,C,C,C,C,C, ... 2,26,26°,... 2 - (1/1-95)
Player2 D,D,D,D,D, D, ... 3,8,8%,8%,... 2+ 1/(1-¢) Player2 C,C,C,C,C,C, ... 2,26,25%,... 2 (Y1-9) D 3’ 0 17 1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor §.




Player 2 deviates by always defecting

Strategy of Player1 Strategy of Player1
Grim Trigger Grim Trigger
Strategy of Player 2 Strategy of Player 2
Deviate, starting at first round Grim Trigger
Sample run Sample run

actions taken payoffs total payoff actions taken payoffs total payoff
Player 1 C,D,D,D,D,D, ... 0,4,62,83,... 3/(1-5) Playjer 1 C,C,C,C,C,C, ... 2,26,26°,... 2. (1/1-6)
Player2 D,D,D,D,D, D, ... 3,§,8%,8%,... 2+ 1/1-0) Player2 C,C,C,C,C,C, ... 2,26,25%,... 2 (Y1-9)
Profitable?

Not a profitable deviation for Player 2 as long as:

2 1i §2'11T57

which happensifand only if:
1
5> 1

i ‘s Dilemma
lterated Prisoner

infinitely iterated, with discount factor 0 < § < 1

Two players play the regular
Prisoner’s Dilemma:

C D

Cl 2.2 0, 3

D| 3,0 1,1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor 6.




What if Player 2 defects later?



Player 2 deviates by defecting later

lterated Prisoner’s Dilemma &

infinitely iterated, with discount factor 0 < § < 1

Si;rategy of Player1 Two players play the regular
Grim Trigger Prisoner’s Dilemma:

C D
Strategy of Player 2 cl 22 0,3

Deviate, starting at round k> 1
D| 3,0 1,1

but an infinite number of times.

Samplerun
actions taken payoffs total payoff The final payoffs are the sum of the
Player 1 C, ..., C,C,D,D, ... 22....261 0618 . the infinite sum payoffs from each round, taking into

account the discount factor §.
Player 2 C, ...,C,D,D, D, ... 22...,267",35% 671,62 .. the infinite sum




Player 2 deviates by defecting later

i ‘s Dilemma P4
lterated Prisoner i

infinitely iterated, with discount factor 0 < § < 1

Strategy of Player1
Grim Trigger

Two players play the regular
Strategy of Player 2 Prisoner’s Dilemma:

Deviate, starting at round k> 1

Sample run
actions taken payoffs total payoff C 2, 2 O, 3
Player 1 C,...,C,C,D,D, ... 225....28* %005 62 .. the infinite sum
Pl 2 e D D D e 2’ 257'725k71'3(5k76k+17(5k+27 th i f' .t
ayer C, ....C,D,D,D, e infinite sum D 3’ 0 17 1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor §.




Player 2 deviates by defecting later

i ‘s Dilemma
lterated Prisoner

infinitely iterated, with discount factor 0 < § < 1

Strategy of Player1 Strategy of Player1
Grim Trigger Grim Trigger
& £ Two players play the regular
. I . .
Strategy of Player 2 Strategy of Player 2 Prisoner’s Di |emmo y
Deviate, starting at round k> 1 Grim Trigger
C D

Sample run Sample run

actions taken payoffs total payoff actions taken payoffs total payoff C 2, 2 O, 3
Player 1 C,...,C,C,D,D, ... 225....28* %005 62 .. the infinite sum Playjer 1 C,C,C,C,C,C, ... 2,26,26°,... 2 (Y1-9)
Player2 C, ..., C,D,D, D, ... 220...,20""36% 5" 6% the infinite sum Player2 C,C,C,C,C,C, ... 2,26,25%,... 2 (Y1-9) D 3’ 0 17 1

but an infinite number of times.

The final payofts are the sum of the
payoffs from each round, taking into
account the discount factor §.
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Note that once Player 2 triggers Player 1 by defecting, Player
2 has no incentive to start cooperating again If all-defection
IS not profitable.



ROBERT AUMANN
We've just shown that if 6 2 0.5, no agent has an incentive
to deviate.

In other words, both players playing Grim Trigger is a
Nash equilibrium!



Finally, a positive result!

Infinite games (with sufficiently large discount factor) admit
equilibria where players cooperate!



The moral?

If players send out a clear signal that they cannot be pushed
around, 1t makes sense to cooperate.



ROBERT AUMANN
There's many other ways of analyzing repeated games.

With or without discounting, with different ways of computing total
payoffs, with different types of equilibria.

When these equilibria can be achieved is the subject of
Intense research.

Results here usually go under the name of folk theorems.



At the same time, Grim Trigger strategies are just one drop
In the vast sea of possible strategies.

They are especially unforgiving, and do not match what we
see In real life.

What else can we do?



ROBERT AXELROD
How about running a tournament...

Axelrod, R. (1984), The Evolution of Cooperation. Basic Books



