
Adrian Haret

REPEATED GAMES, WITH AND WITHOUT DISCOUNTING
COOPERATE, OR ELSE
STRATEGIC MINDS: THE GAME THEORY OF COOPERATION, COORDINATION AND COLLABORATION

May 6, 2024

a.haret@lmu.de

STRATEGIC MINDS: THE GAME THEORY OF COOPERATION, COORDINATION AND COLLABORATION

REPEATED GAMES, WITH AND WITHOUT DISCOUNTING
COOPERATE, OR ELSE



Melvin and I came up with the idea behind the
Prisoner's Dilemma in the 50's, while working for the

RAND corporation.

MERRIL FLOOD

MELVIN DRESHER

Poundstone, W. (1993). Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the Bomb.
Anchor Books.



Melvin and I came up with the idea behind the
Prisoner's Dilemma in the 50's, while working for the

RAND corporation.

MERRIL FLOOD

Amidst concern about nuclear war and political
instability, we devised a little game to show that the Nash
equilibrium sometimes makes strange predictions.

MELVIN DRESHER

MERRIL FLOOD

Poundstone, W. (1993). Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the Bomb.
Anchor Books.



Melvin and I came up with the idea behind the
Prisoner's Dilemma in the 50's, while working for the

RAND corporation.

MERRIL FLOOD

Amidst concern about nuclear war and political
instability, we devised a little game to show that the Nash
equilibrium sometimes makes strange predictions.

MELVIN DRESHER

We made two of our friends, AA and JW, play the game
over 100 times, and recorded their reactions.

MERRIL FLOOD

Poundstone, W. (1993). Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the Bomb.
Anchor Books.

MELVIN DRESHER



Melvin and I came up with the idea behind the
Prisoner's Dilemma in the 50's, while working for the

RAND corporation.

MERRIL FLOOD

Amidst concern about nuclear war and political
instability, we devised a little game to show that the Nash
equilibrium sometimes makes strange predictions.

MELVIN DRESHER

We made two of our friends, AA and JW, play the game
over 100 times, and recorded their reactions.

MERRIL FLOOD

Poundstone, W. (1993). Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the Bomb.
Anchor Books.

For all the confusion, mutual cooperation occurred 60 out
of the 100 trials.
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Are AA and JW irrational?



What do you say to that, John?!
MERRIL FLOOD

JOHN NASH



What do you say to that, John?!
MERRIL FLOOD

You know, playing the Prisoner’s Dilemma one time is
not the same as playing it 100 times.

JOHN NASH

Playing it over and over again is like playing a
different, multi-round game.

In the one-shot game there’s no room for things like
loyalty, trust, threats, or revenge.

But in the iterated version, these things can be
relevant!



This might give us a way out of the pessimistic outlook of the
Prisoner’s Dilemma.

Does the equilibrium change if the game is played repeatedly?



So far we’ve been assuming that players
make moves simultaneously, in ignorance
of the other players’ actions.

But, of course, some games are played
over rounds.

1

2

_ , _ _ , _

2

_ , _ _ , _

a a’

b b’ b’’ b’’’

player 1 knows the

consequences of their

actions

player 2 knows the action

taken by player 1

In perfect-information extensive-form
games, players take turns deploying their
actions.

And are aware of actions taken at
previous rounds: perfect memory!

PERFECT-INFORMATION EXTENSIVE GAMES



payoffs

Pareto optimal strategy profiles

pure Nash equilibria
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The Ultimatum Game
Player 1 has two euros, which it has
to divide between themselves and
player 2.

Player 1 makes an offer, which player
2 can accept or reject.

If player 2 accepts, money is divided
according to player 1's offer.

If player 2 rejects, no one gets
anything.

1/2

mixed Nash equilibria
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yes yesno yesno no

2-0 1-1 0-2



yyy yyn yny ynn nyy nyn nny nnn

(2-0) 2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0

(1-1) 1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0

(0-2) 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0

1

2

2, 0 0, 0
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2

0, 2 0, 0

yes yesno yesno no

2-0 1-1 0-2



Nash equilibria and everything
else is computed with respect to
the induced normal-form game.
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too lazy to figure out



There are interesting cultural
differences in the offers people from

different cultures accept and reject
when playing The Ultimatum Game.

JOE HENRICH

Henrich, J., McElreath, R., Barr, A., Ensminger, J., Barrett, C., Bolyanatz, A., Cardenas, J. C.,
Gurven, M., Gwako, E., Henrich, N., Lesorogol, C., Marlowe, F., Tracer, D., & Ziker, J. (2006).

Costly punishment across human societies. Science, 312(5781), 1767–1770.
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2, 0 0, 0
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2

0, 2 0, 0

yes yesno yesno no

2-0 1-1 0-2

What makes (2-0, nnn) a Nash equilibrium
depends crucially on what Player 2 does at all
nodes: including ‘irrelevant’ ones.

Think: why does Player 1 not want to deviate?

Because Player 2 always says no, so there’s no
point!



In general, we can always transform an extensive-information
game with perfect information into a game in normal form.



Enter extensive-form games with imperfect information.



1

2

_ , _ _ , _

2

_ , _ _ , _

a'a

b b' b b'

ADDING UNCERTAINTY: A DASHED LINE

dashed line representsuncertainty over the action taken

Player 2 does not know what action
Player 1 has actually taken.

these choice nodes are partof the same information set



Now we can finally get back to the Prisoner’s Dilemma!
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Cooperate CooperateDefect Defect
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2 2

Cooperate Defect

Cooperate CooperateDefect Defect

could equally place Player 2at the root.

2, 2 0, 3 3, 0 1, 1

Cooperate Defect

Cooperate 2, 2 0, 3

Defect 3, 0 1, 1



Now we can even model the iterated Prisoner’s Dilemma!



A finite number of rounds.

Like, say, two.
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Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

1/2
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2 2

1

Cooperate Defect

1 1 1

2 2 2 2 2 2 2 2

4, 4

Cooperate Defect

Cooperate

Cooperate

Defect

Defect

2, 5 5, 2 3, 3 2, 5 0, 6 3, 3 1, 4 5, 2 3, 3 6, 0 4, 1 3, 3 1, 4 4, 1 2, 2

Defect

Cooperate CooperateDefect Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect

Cooperate Defect Cooperate Defect Cooperate Defect

Cooperate

Two Rounds of the
Prisoner’s Dilemma
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C, C C, D D, C D, D

C, C 2 + 2, 2 + 2 2 + 0, 2 + 3 0 + 2, 3 + 2 0 + 0, 3 + 3

C, D 2 + 3, 2 + 0 2 + 1, 2 + 1 0 + 3, 3 + 0 0 + 1, 3 + 1

D, C 3 + 2, 0 + 2 3 + 0, 0 + 3 1 + 2, 1 + 2 1 + 0, 1 + 3

D, D 3 + 3, 0 + 0 3 + 1, 0 + 1 1 + 3, 1 + 0 1 + 1, 1 + 1

Iterated Prisoner’s Dilemma

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

1/2

2 iterations
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2 iterations C, C C, D D, C D, D

C, C 4, 4 2, 5 2, 5 0, 6

C, D 5, 2 3, 3 3, 3 1, 4

D, C 5, 2 3, 3 3, 3 1, 4

D, D 6, 0 4, 1 4, 1 2, 2



So how do we analyze the 2-round Prisoner’s Dilemma?
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Again, the only Nash equilibrium is to always defect, for
both players.

Note that we’d get the same conclusion for k > 2 rounds.



Well that was pointless.



Quick recap.



In the Prisoner’s Dilemma, the unique Nash equilibrium  
requires both players to defect.

We often observe cooperation in the real world.

What should we add to our model to make cooperation
rational?

Maybe if players acknowledge they are in a repeated
relationship.

Unfortunately, if the Prisoner’s Dilemma is repeated a
commonly known finite number of times, the Nash
equilibrium is still defect at every round.



What if the game is played for an infinite number of times?
ROBERT AUMANN

As in, we don’t have a fixed number k of rounds at
which the game ends.



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

but an infinite number of times.

The final payoffs are the sum of the
payoffs from each round.

C D

C 2, 2 0, 3

D 3, 0 1, 1

1/2

infinitely iterated

Players
N = {1, 2}

Strategies of Player 1
(C, C, ...), (C, D, ....), ...

Strategies of Player 2
(C, C, ...), (C, D, ....), ...

Payoffs (aka utilities)

For instance, if both players always cooperate,
payoffs are infinite series: (2, 2, ...), and the
final payoff is:

In general, infinite sums.



ROBERT AUMANN
Let’s also add a discount factor δ, with 0 < δ < 1, which

works as follows.

At every new round, the payoffs are multiplied by δ.



ROBERT AUMANN
Let’s also add a discount factor δ, with 0 < δ < 1, which

works as follows.

At every new round, the payoffs are multiplied by δ.

So for δ = 0.8, $100 today is worth 0.8 • $100 = $80
tomorrow, and 0.8 • $80 = $64 in two days.



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

but an infinite number of times.

The final payoffs are the sum of the
payoffs from each round, taking into
account the discount factor δ.

C D

C 2, 2 0, 3

D 3, 0 1, 1

1/2

infinitely iterated, with discount factor, 0 < δ < 1

Players
N = {1, 2}

Strategies of Player 1
(C, C, ...), (C, D, ....), ...

Strategies of Player 2
(C, C, ...), (C, D, ....), ...

Payoffs (aka utilities)

For instance, if both players always cooperate,
payoffs are infinite series: (2, 2δ, 2δ², ...), and
the final payoff is:

In general, infinite sums.



In general, for infinite sums we can use the following
identity, for 0 < x < 1:
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N = {1, 2}
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(C, C, ...), (C, D, ....), ...
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What does the discount factor δ stand for?



INTERPRETING THE DISCOUNT FACTOR
Patience

For a discount factor δ you value $1, received t rounds from now, at $1⋅ δᵗ.

This is less than $1, because 0 < δ < 1.

You’re more patient the less you mind waiting for something valuable,
rather than receiving it immediately.

As δ gets closer to 1, the agent is more patient.



Patience

For a discount factor δ you value $1, received t rounds from now, at $1⋅ δᵗ.

Uncertainty about the future
You might prefer $1 today to $1 tomorrow because you’re not sure
tomorrow will even come.

This is less than $1, because 0 < δ < 1.

You’re more patient the less you mind waiting for something valuable,
rather than receiving it immediately.

As δ gets closer to 1, the agent is more patient.

δ can be the probability that there is a round t + 1, if round t has
happened.

$1⋅ δᵗ is then the expected payoff at round t.

INTERPRETING THE DISCOUNT FACTOR



Consider, now, the following strategy, called Grim Trigger.
ROBERT AUMANN

Start by cooperating. If the other player defects at some
round t, switch to defecting forever, i.e., at every round t’ > t. 



Let’s look at a run of the game when one player plays Grim
Trigger.



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

but an infinite number of times.

The final payoffs are the sum of the
payoffs from each round, taking into
account the discount factor δ.

C D

C 2, 2 0, 3

D 3, 0 1, 1

actions taken payoffs total payoff

Player 1 C, C, C, D, D, D, ... the infinite sum

Player 2 C, C, D, C, C, C, ... the infinite sum

1/2

infinitely iterated, with discount factor 0 < δ < 1

EXAMPLE RUNS WITH GRIM TRIGGER

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Start by cooperating; defect once at some random round t > 1

Sample run
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And when both players use Grim Trigger?
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EXAMPLE RUNS WITH GRIM TRIGGER



Does any agent have an incentive to deviate from Grim
Trigger?
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Player 2 deviates by always defecting

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Deviate, starting at first round

Sample run
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Strategy of Player 1
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Profitable?
Not a profitable deviation for Player 2 as long as:

which happens if and only if:

Player 2 deviates by always defecting



What if Player 2 defects later?
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Strategy of Player 2
Deviate, starting at round k > 1

Sample run
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Deviate, starting at round k > 1

Sample run



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

but an infinite number of times.

The final payoffs are the sum of the
payoffs from each round, taking into
account the discount factor δ.

C D

C 2, 2 0, 3

D 3, 0 1, 1

actions taken payoffs total payoff

Player 1 C, ..., C, C, D, D, ... the infinite sum

Player 2 C, ..., C, D, D, D, ... the infinite sum

1/2

infinitely iterated, with discount factor 0 < δ < 1

Player 2 deviates by defecting later

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Deviate, starting at round k > 1

Sample run
actions taken payoffs total payoff

Player 1 C, C, C, C, C, C, ...

Player 2 C, C, C, C, C, C, ...

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Grim Trigger

Sample run



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

but an infinite number of times.

The final payoffs are the sum of the
payoffs from each round, taking into
account the discount factor δ.

C D

C 2, 2 0, 3

D 3, 0 1, 1

actions taken payoffs total payoff

Player 1 C, ..., C, C, D, D, ... the infinite sum

Player 2 C, ..., C, D, D, D, ... the infinite sum

actions taken payoffs total payoff

Player 1 C, C, C, C, C, C, ...

Player 2 C, C, C, C, C, C, ...

1/2

infinitely iterated, with discount factor 0 < δ < 1

Player 2 deviates by defecting later

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Deviate, starting at round k > 1

Sample run

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Grim Trigger

Sample run

Profitable?
Not a profitable deviation for Player 2 as long as:



Note that once Player 2 triggers Player 1 by defecting, Player
2 has no incentive to start cooperating again if all-defection
is not profitable.



ROBERT AUMANN
We’ve just shown that if δ ≥ 0.5, no agent has an incentive

to deviate.

In other words, both players playing Grim Trigger is a
Nash equilibrium!



Infinite games (with sufficiently large discount factor) admit
equilibria where players cooperate!

Finally, a positive result!



If players send out a clear signal that they cannot be pushed
around, it makes sense to cooperate.

The moral?



ROBERT AUMANN
There’s many other ways of analyzing repeated games.

With or without discounting, with different ways of computing total
payoffs, with different types of equilibria.

When these equilibria can be achieved is the subject of
intense research.

Results here usually go under the name of folk theorems.



At the same time, Grim Trigger strategies are just one drop
in the vast sea of possible strategies.

They are especially unforgiving, and do not match what we
see in real life.

What else can we do?



ROBERT AXELROD
How about running a tournament...

Axelrod, R. (1984), The Evolution of Cooperation. Basic Books


