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Pure Nash equilibria always exist.



Pure Nash equilibria always exist.

Except when they don't.



Matching Pennies = = payoffs

Two players have a penny each.

Heads Tails
They decide on a face and reveal it Heads| 1. -1 1.1
at the same time.
f the faces match, player 1 wins $1, Tails| -1, 1 1, -1

vlayer 2 loses $1.

f the faces do not match, player 2 all
wins $1, player 1 loses $1.

1/2 2/2



There Is, however, a different way to play this game.
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Sometimes the best thing to do is to flip a coin.



MIXED STRATEGIES

A mixed strategy for player i I1s a probability ditribution over actions, written
si = (p1,.--,pj,.--), Where p; Is the probability with which player i plays
action j.



MIXED STRATEGIES

A mixed strategy for player i I1s a probability ditribution over actions, written
si = (p1,.--,pj,.--), Where p; Is the probability with which player i plays
action j.

Note that the pure strategies we've been dealing with so far are special cases
of mixed strategies, in which one action is played with probability 1.



With mixed strategies, how are players supposed to play?

They aim to maximize expected utility.



EXPECTED UTILITY

An agent has to decide between different
actions.

action 1
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EXPECTED UTILITY

An agent has to decide between different

actions.
The utility depends on the action taken and state 1 (p;) state £ (py)
some external state.

action 1| u(action 1, state 1) u(action 1, state /)
The probabilities of the different states are
known.
The expected Utlllty of an aCtiOn iS' action k | u(action k, state 1) u(action k, state ¢)

E[u(action)] =) (u(action,state) . Pr [state})

state

An agent goes with the action that maximizes
this.



Back to the Matching Pennies game.



FINDING MIXED EQUILIBRIA

Assume Player 1 has strategy s; = (0.9,0.1). What should Player 2 do? @ payoffs
Heads Tails
Heads (0.9) -1 1
Tails (0.1) 1 -1
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FINDING MIXED EQUILIBRIA

Assume Player 1 has strategy s; = (0.9,0.1). What should Player 2 do? @ payoffs
E[Heads] = (—1)-0.941-0.1
— 08 Heads Tails
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FINDING MIXED EQUILIBRIA

Assume Player 1 has strategy s; = (0.9,0.1). What should Player 2 do?

E[Heads] = (—1)-0.941-0.1
= —0.8.
E[Tails] =1-0.9+ (—1)-0.1
= 0.8.

If Player 2 always plays Heads, they get an average payoff of —0.8. If
they always play Tails, they get an average payoff of 0.8.

Heads Tails
Heads (0.9) -1 1
Tails (0.1) 1 -1
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FINDING MIXED EQUILIBRIA

Assume Player 1 has strategy s; = (0.9,0.1). What should Player 2 do? @ payoffs
E[Heads] = (—1)-094+1-0.1
— 0.8, Heads Tails
E[Tails] =1-0.9+ (—1)-0.1 Heads (0.9) 1 1
= 0.8.
If Player 2 always plays Heads, they get an average payoff of —0.8. If Tails (0.1) 1 -1
they always play Tails, they get an average payoff of 0.8.
Would it make sense for Player 2 to mix between Heads and Tails, say e, PATELO ODUIMAL Strategies
with s, = (0.3,0.7)? all
Hal S80S FOs 0t s PUTE Nash equilibria
= 0.32 none

< 0.8.
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FINDING MIXED EQUILIBRIA

Assume Player 1 has strategy s; = (0.9,0.1). What should Player 2 do?

E[Heads] = (—1)-0.941-0.1
= —0.8.
E[Tails] =1-0.9+ (—1)-0.1
= 0.8.

If Player 2 always plays Heads, they get an average payoff of —0.8. If
they always play Tails, they get an average payoff of 0.8.

Would it make sense for Player 2 to mix between Heads and Tails, say
with s5 = (0.3,0.7)?

E[s,] = (—0.8) - 0.3+ 0.8 - 0.7
= (.32
< 0.8.

No mixing gives better results than always going for Tails, so Player 2
wants to play s = (0,1).

Heads (0) Tails (1)
Heads (0.9) -1 1
Tails (0.1) 1 -1
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FINDING MIXED EQUILIBRIA

Assume Player 1 has strategy s; = (0.9,0.1). What should Player 2 do?

E[Heads] = (—1)-0.941-0.1
= —0.8.
E[Tails] =1-0.9+ (—1)-0.1
= 0.8.

If Player 2 always plays Heads, they get an average payoff of —0.8. If
they always play Tails, they get an average payoff of 0.8.

Would it make sense for Player 2 to mix between Heads and Tails, say
with s5 = (0.3,0.7)?

E[s,] = (—0.8) - 0.3+ 0.8 - 0.7
= (.32
< 0.8.

No mixing gives better results than always going for Tails, so Player 2
wants to play s = (0,1).

Is s = (s1, s2) a Nash equilibrium?

payoffs
Heads (0) Tails (1)
Heads (0.9) 1, -1 -1, 1
Tails (0.1) -1, 1 1, -1
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FINDING MIXED EQUILIBRIA

Assume Player 1 has strategy s; = (0.9,0.1). What should Player 2 do?

E[Heads] = (—1)-0.941-0.1
= —0.8.
E[Tails] =1-0.9+ (—1)-0.1
= 0.8.

If Player 2 always plays Heads, they get an average payoff of —0.8. If
they always play Tails, they get an average payoff of 0.8.

Would it make sense for Player 2 to mix between Heads and Tails, say
with s5 = (0.3,0.7)?

E[s,] = (—0.8) - 0.3+ 0.8 - 0.7
= (.32
< 0.8.

No mixing gives better results than always going for Tails, so Player 2
wants to play s = (0,1).

Is s = (s1, s2) a Nash equilibrium?

No! If Player 2 plays s; = (0, 1), Player 1 wants to switch to s; = (0, 1).

Heads (0) 1 -1

Tails (1) -1 1

2/2



FINDING MIXED EQUILIBRIA

In general, if Player 1 plays a mixed strategy that makes Player 2 prefer @ payoffs
one action over ano'ther, Pl_ayer 2 Wil.l. just Start playing that action a“ ......................................................................
the time. Heads (q) Tails (1- q)
Player 2 sees the opportunity and goes for it! Heads (p) 1. -1 1.1
Tails (1- p) -1, 1 L, -1

Pareto optimal strategies
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In general, if Player 1 plays a mixed strategy that makes Player 2 prefer @ payoffs
one action over another’ Pl_ayer 2 will just start p[aylng that action all [ ccecreversersverscasvcnscasvcnscasvenscasvenssasvssssasvenssasssnssass

the time. Heads (q) Tails (1 - q)

Player 2 sees the opportunity and goes for it! Heads (p) I, -1 -1, 1

But that makes Player 1 want to change their strategy.
Tails (1- p) -1, 1 L, -1

So this cannot be a Nash equilibrium.

Pareto optimal strategies
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FINDING MIXED EQUILIBRIA

In general, if Player 1 plays a mixed strategy that makes Player 2 prefer
one action over another, Player 2 will just start playing that action all

the time.

Player 2 sees the opportunity and goes for it!

But that makes Player 1 want to change their strategy.
So this cannot be a Nash equilibrium.

The only way to avoid this is for Player 1to play a strategy s7 = (p, 1—p)
that makes Player 2 indifferent between their actions, which means

that:

E[Heads] = E[Tails] iff (=1) -p+1-(1—p)=1-p+ (1) (1 —p)
Iff p = 1/2.

So Player 1 wants to play s7 = (1/2,1/2).

Heads (q) Tails (1- q)

Heads (0.5) 1, -1 -1, 1

Tails (0.5) -1, 1 L, -1

Pareto optimal strategies
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FINDING MIXED EQUILIBRIA

In general, if Player 1 plays a mixed strategy that makes Player 2 prefer @ payoffs
one action over another’ Pl_ayer 2 will just start p[aylng that action all [ ccecreversersverscasvcnscasvcnscasvenscasvenssasvssssasvenssasssnssass

the time. Heads (0.5) Tails (0.5)

Player 2 sees the opportunity and goes for it! Heads (0.5) 1, -1 -1, 1

But that makes Player 1 want to change their strategy.
Tails (0.5) -1, 1 L, -1

So this cannot be a Nash equilibrium.

The only way to avoid this is for Player 1to play a strategy s7 = (p, 1—p) eeeeeernreseseeennennnp Ar€t0 Optimal strategies

that makes Player 2 indifferent between their actions, which means

hat: .
et ettt PUTE NaSH equilibria
E[Heads| = E[Tails] iff (-1) - p+1-(1—-p)=1-p+(—-1)- (1 —p) none
o
e mixed Nash equilibria
So Player 1 wants to play si = (1/2, 1/2). s* = ((1/2,1/2), (1/2,1/2))

Similarly, Player 2 wants to play s5 = (1/2, 1/2).

2/2

This is the mixed Nash equilibrium.
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JOHN NASH
This works for finding mixed Nash equilibria in general.



NASH’S THEOREM

THEOREM (NASH, 1951)
Any game with a finite number of players and finite actions has a
Nash equilibrium in mixed strategies.

Nash, J. (1951). Non-Cooperative Games. Annals of Mathematics, 54(2), 286-295.
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JOHN NASH

| got the Nobel prize for this result!



Fun fact: humans are not that good at randomizing.



ARIEL RUBINSTEIN
In experiments, they keep trying to detect patterns,
are susceptible to stories and framing effects.

Mookherjee, D., & Sopher, B. (1994). Learning Behavior in an Experimental Matching Pennies Game.
Games and Economic Behavior, 7(1), 62-91.

Eliaz, K, & Rubinstein, A. (2011). Edgar Allan Poe’s riddle: Framing effects in repeated matching pennies
games. Games and Economic Behavior, 71(1), 88-99.



ARIEL RUBINSTEIN

In experiments, they keep trying to detect patterns,
are susceptible to stories and framing effects.

Mookherjee, D., & Sopher, B. (1994). Learning Behavior in an Experimental Matching Pennies Game.
Games and Economic Behavior, 7(1), 62-91.

Eliaz, K, & Rubinstein, A. (2011). Edgar Allan Poe’s riddle: Framing effects in repeated matching pennies
games. Games and Economic Behavior, 71(1), 88-99.

COLIN CAMERER
Interestingly, chimps seem to be pretty good at It.

A) Task B) Game Payoffs
Matcher Matcher
0) i{) Left Right Left  Right
L 1 0| & 3 0
: 0% ]
Trial start, self-start Matcher Mismatcher < a 0 1 g o 0 2
stimuli presented. E N ‘E N
as|, 0 1| &5, 0f 1
| Sx|1 0 s |2 0
C) Setup & ‘ Sy._fnmem'c . Asymmetric
' Matcher Mismatcher Matching Pennies Matching Pennies
Left/Right Match
choices appear. Bee R?'rht
Players make Left Rig
choice. e 4 0
Tk £ 1 2
2 |
E (1]
Food reward dispensed to \_ Matcher Mismatcher EE 0 1
winner. Opponent's choice % g‘ 2 0
shown as blinking stimulus
for 2000ms. Inspection Game

Martin, C. F.,, Bhui, R, Bossaerts, P., Matsuzawa, T., & Camerer, C. (2014). Chimpanzee choice rates in
competitive games match equilibrium game theory predictions. Nature: Scientific Reports, 4, 5182.



What do the probabilities in a mixed strategy mean?



WHAT IS A MIXED STRATEGY ABOUT?

It can describe a randomization process
between pure strategies inside a player’s head.

(0.5)

(0.5)

,

s
D
(0.5) Tails (0.5)
1, -1 -1, 1
-1. 1 1, -1




WHAT IS A MIXED STRATEGY ABOUT?

O

It can describe a randomization process
between pure strategies inside a player’s head. Q

It can also describe a (large) population of Q
players playing pure strategies, in proportions
described by the probabilities.
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WHAT IS A MIXED STRATEGY ABOUT?

It can also describe a (large) population of
players playing pure strategies, in proportions

described by the probabilities. @/@) @/@)

It can describe a randomization process
between pure strategies inside a player’s head. % %



WHAT IS A MIXED STRATEGY ABOUT?

It can describe a randomization process

between pure strategies inside a player’s head. x x

It can also describe a (large) population of
players playing pure strategies, in proportions
described by the probabilities.

/’




Some strategies (aka, players that play those strategies) are
successful, others are not.

Like life.



Some strategies (aka, players that play those strategies) are
successful, others are not.

Like life.
And, like in life, we can assume successful strategies thrive.

And the others... well, they go extinct.
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JOHN MAYNARD SMITH

Paradoxically, it has turned out that game theory is more readily applied
to biology than to the field of economic behaviour for which it was
originally designed.

Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge University Press.
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JOHN MAYNARD SMITH

Paradoxically, it has turned out that game theory is more readily applied
to biology than to the field of economic behaviour for which it was
originally designed.

In biology, Darwinian fitness provides a natural [...] scale [for utility].

Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge University Press.
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JOHN MAYNARD SMITH

Paradoxically, it has turned out that game theory is more readily applied
to biology than to the field of economic behaviour for which it was
originally designed.

In biology, Darwinian fitness provides a natural [...] scale [for utility].

Secondly, and more importantly, in seeking the solution of a game, the
concept of human rationality Is replaced by that of evolutionary stability.

Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge University Press.
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Consider a world of cooperators...
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Individuals are paired randomly with each
other and play a Prisoner’s Dilemma.

The payoffs determine how many copies of
these players make it to the next round.
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DO COOPERATORS SURVIVE?

Consider a world of cooperators...

...iIn which one wild defector shows up.

Individuals are paired randomly with each
other and play a Prisoner’s Dilemma.

The payoffs determine how many copies of
these players make it to the next round.

What happens in the long run?

Defectors inherit the earth! .



In a well-mixed population (i.e., equal probability of being paired
with anyone else), defectors drive cooperators to extinction.



THE CALCULUS

Assume that at some time ¢ there are ¢ cooperators and d defectors.
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THE CALCULUS

Assume that at some time ¢ there are ¢ cooperators and d defectors.

The expected payoff of a cooperator is:

E|Cooperate| = u(Cooperate, Cooperate) - Pr/match w/ cooperator|+

u(Cooperate, Defect) - Pr[match w/ defector]

1 d
40

—92. . .
c+d c+d

The expected payoff of a defector is:

E Defect| = u(Defect, Cooperate) - Pr/match w/ cooperator|+

u(Defect, Defect) - Pr[match w/ defector]
c 1 d—1
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THE CALCULUS

Assume that at some time ¢ there are ¢ cooperators and d defectors.

The expected payoff of a cooperator is:

E|Cooperate| = u(Cooperate, Cooperate) - Pr/match w/ cooperator|+

u(Cooperate, Defect) - Pr[match w/ defector]

1 d
40

—92. . .
c+d c+d

The expected payoff of a defector is:

E Defect| = u(Defect, Cooperate) - Pr/match w/ cooperator|+

u(Defect, Defect) - Pr[match w/ defector]
c 1 d—1

=3- : :
c+d+_ c+d

Note that E|Defect] > E[Cooperate].
Defectors grow faster than cooperators.

Eventually, cooperators die out.




Q@-&
L
JOHN MAYNARD SMITH

Imagine a world of A players, and throw a B player in there.

The game between As and Bs Is given by this game:

a, a b, c

c, b d, d

What is the condition for selection to oppose the invasion of Bs?



GETTING TO AN EVOLUTIONARILY STABLE STRATEGY

Assume the proportions of Bs Is ¢, and the proportion of Asis 1 — «.

(1-¢) (€)

(1-8)| a, a b, c
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GETTING TO AN EVOLUTIONARILY STABLE STRATEGY

Assume the proportions of Bs Is ¢, and the proportion of Asis 1 — «.

The expected payoff of A is greater than that of B If:

a(l—¢€)+be > c(l —¢)+ de, (1-¢) (¢)
which, If we ignore the ¢ terms, Is equivalent to: U-8 ¢ b, €
vz © b dd
If, however, it happens that a = ¢, then we need:
b > d.

A strategy Is evolutionarily stable if a > ¢, ora = cand b > d.
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JOHN MAYNARD SMITH

Intuitively, an evolutionarily stable strategy is a genetically determined
strategy that tends to persist once prevalent in the population.



EVOLUTIONARILY STABLE STRATEGY

We write u(s;, s;) for the payoff of strategy s; against s;.
Strategy s; is an evolutionarily stable strategy (ESS) if:
(i) w(si,s;) > u(s;,s;), for all strategies s; # s;, or

(i1) w(s;,s;) =u(sj,s;)and u(s;,s;) > u(s;, s;), for all strategies s; # s;.



Note that in the Prisoner’s Dilemma the ESS
Is defection.
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JOHN MAYNARD SMITH

This makes the problem of cooperation even more acute: how can
cooperators survive when they can be so easily invaded by defectors?

g ®©



