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Pure Nash equilibria always exist.



Pure Nash equilibria always exist.

Except when they don’t.
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Matching Pennies
Two players have a penny each.

They decide on a face and reveal it
at the same time.

If the faces match, player 1 wins $1,
player 2 loses $1.

If the faces do not match, player 2
wins $1, player 1 loses $1.
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payoffs

Heads Tails

Heads 1, -1 -1, 1

Tails -1, 1 1, -1

Pareto optimal strategies
all

pure Nash equilibria
none



There is, however, a different way to play this game.



Sometimes the best thing to do is to flip a coin.
JOHN NASH



MIXED STRATEGIES

DEFINITION



MIXED STRATEGIES

DEFINITION



With mixed strategies, how are players supposed to play?

They aim to maximize expected utility.
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...

action 1 ...

... ... ...

action k ...

EXPECTED UTILITY

The expected utility of an action is:

An agent has to decide between different
actions.

The utility depends on the action taken and
some external state.

The probabilities of the different states are
known.

An agent goes with the action that maximizes
this.



Back to the Matching Pennies game.



Heads Tails

Heads (0.9) 1, -1 -1, 1

Tails (0.1) -1, 1 1, -1

2/2

payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

FINDING MIXED EQUILIBRIA



Heads Tails

Heads (0.9) 1, -1 -1, 1

Tails (0.1) -1, 1 1, -1

2/2

payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

FINDING MIXED EQUILIBRIA



Heads Tails

Heads (0.9) 1, -1 -1, 1

Tails (0.1) -1, 1 1, -1

2/2

payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

FINDING MIXED EQUILIBRIA



Heads Tails

Heads (0.9) 1, -1 -1, 1

Tails (0.1) -1, 1 1, -1

2/2

payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

FINDING MIXED EQUILIBRIA



Heads (0) Tails (1)

Heads (0.9) 1, -1 -1, 1

Tails (0.1) -1, 1 1, -1

2/2

payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

FINDING MIXED EQUILIBRIA



Heads (0) Tails (1)

Heads (0.9) 1, -1 -1, 1

Tails (0.1) -1, 1 1, -1

2/2

payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

FINDING MIXED EQUILIBRIA



Heads (0) Tails (1)

Heads (0) 1, -1 -1, 1

Tails (1) -1, 1 1, -1
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Heads (q) Tails (1 - q)

Heads (p) 1, -1 -1, 1

Tails (1 - p) -1, 1 1, -1
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Heads (q) Tails (1 - q)

Heads (0.5) 1, -1 -1, 1

Tails (0.5) -1, 1 1, -1
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payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

mixed Nash equilibria

FINDING MIXED EQUILIBRIA



Heads (0.5) Tails (0.5)

Heads (0.5) 1, -1 -1, 1

Tails (0.5) -1, 1 1, -1

2/2

payoffs

Pareto optimal strategies
all

pure Nash equilibria
none

mixed Nash equilibria

FINDING MIXED EQUILIBRIA



This works for finding mixed Nash equilibria in general.
JOHN NASH



Any game with a finite number of players and finite actions has a
Nash equilibrium in mixed strategies. 

THEOREM (NASH, 1951)

Nash, J. (1951). Non-Cooperative Games. Annals of Mathematics, 54(2), 286–295.

NASH’S THEOREM



I got the Nobel prize for this result!
JOHN NASH



Fun fact: humans are not that good at randomizing.



In experiments, they keep trying to detect patterns,
are susceptible to stories and framing effects. 

ARIEL RUBINSTEIN

Mookherjee, D., & Sopher, B. (1994). Learning Behavior in an Experimental Matching Pennies Game.
Games and Economic Behavior, 7(1), 62–91.

Eliaz, K., & Rubinstein, A. (2011). Edgar Allan Poe’s riddle: Framing effects in repeated matching pennies
games. Games and Economic Behavior, 71(1), 88–99.



In experiments, they keep trying to detect patterns,
are susceptible to stories and framing effects. 

ARIEL RUBINSTEIN

Interestingly, chimps seem to be pretty good at it.
COLIN CAMERER

Martin, C. F., Bhui, R., Bossaerts, P., Matsuzawa, T., & Camerer, C. (2014). Chimpanzee choice rates in
competitive games match equilibrium game theory predictions. Nature: Scientific Reports, 4, 5182.

Mookherjee, D., & Sopher, B. (1994). Learning Behavior in an Experimental Matching Pennies Game.
Games and Economic Behavior, 7(1), 62–91.

Eliaz, K., & Rubinstein, A. (2011). Edgar Allan Poe’s riddle: Framing effects in repeated matching pennies
games. Games and Economic Behavior, 71(1), 88–99.



What do the probabilities in a mixed strategy mean?



Heads (0.5) Tails (0.5)

Heads (0.5) 1, -1 -1, 1

Tails (0.5) -1, 1 1, -1

It can describe a randomization process
between pure strategies inside a player’s head.
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Some strategies (aka, players that play those strategies) are
successful, others are not.

Like life.
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Like life.

And, like in life, we can assume successful strategies thrive.

And the others... well, they go extinct.



Paradoxically, it has turned out that game theory is more readily applied
to biology than to the field of economic behaviour for which it was

originally designed.

JOHN MAYNARD SMITH

Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge University Press.



Paradoxically, it has turned out that game theory is more readily applied
to biology than to the field of economic behaviour for which it was

originally designed.

JOHN MAYNARD SMITH

In biology, Darwinian fitness provides a natural [...] scale [for utility].

Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge University Press.



Paradoxically, it has turned out that game theory is more readily applied
to biology than to the field of economic behaviour for which it was

originally designed.

JOHN MAYNARD SMITH

In biology, Darwinian fitness provides a natural [...] scale [for utility].

Secondly, and more importantly, in seeking the solution of a game, the
concept of human rationality is replaced by that of evolutionary stability.

Smith, J. M. (1982). Evolution and the Theory of Games. Cambridge University Press.
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t = 5

Consider a world of cooperators...

       ...in which one wild defector shows up.

Individuals are paired randomly with each
other and play a Prisoner’s Dilemma.

The payoffs determine how many copies of
these players make it to the next round.

What happens in the long run?

Defectors inherit the earth!

DO COOPERATORS SURVIVE?



In a well-mixed population (i.e., equal probability of being paired
with anyone else), defectors drive cooperators to extinction.
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JOHN MAYNARD SMITH
Imagine a world of A players, and throw a B player in there.

The game between As and Bs is given by this game:
A B

A a, a b, c

B c, b d, d

What is the condition for selection to oppose the invasion of Bs?
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JOHN MAYNARD SMITH
Intuitively, an evolutionarily stable strategy is a genetically determined

strategy that tends to persist once prevalent in the population.



DEFINITION

EVOLUTIONARILY STABLE STRATEGY



Cooperate Defect

Cooperate 2, 2 0, 3

Defect 3, 0 1, 1

Note that in the Prisoner’s Dilemma the ESS
is defection.



JOHN MAYNARD SMITH
This makes the problem of cooperation even more acute: how can

cooperators survive when they can be so easily invaded by defectors?


