STRATEGIC MINDSs: THE GAME THEORY OF COOPERATION, COORDINATION AND COLLABORATION GAME THIEORY 101 SOClAL DILIMMAS AND IOUILBRA

Let's play a game!

The Trust Game

There are two players with initial endowment of 1 each.

Player 1 makes the first move, by deciding whether to invest in a joint venture.

If Player 1 makes no investment, the game is over and both players retain their endowments.

If Player 1 invests, the 1 generates a surplus and turns into 3.

Player 2 now has to decide how to allocate the available sum of $1+3=4$ among the players.

Player 2 can either divide the sum equally, or keep everything.

Suppose you are an individually rational economic agent, i.e., aiming to maximize your own payoff.

How would you play this game?

The Trust Game

payoffs
There are two players with initial endowment of 1 each.

Player 1 makes the first move, by deciding whether to invest in a joint venture.

If Player 1 makes no investment, the game is over and both players retain their endowments.

If Player 1 invests, the 1 generates a surplus and turns into 3.

Player 2 now has to decide how to allocate the available sum of $1+3=4$ among the players.

Player 2 can either divide the sum equally, or keep everything.

How do people generally play this game?

EXPERIMENTAL RESULTS IN THE TRUST GAME

The original experiment features 32 participants from the University of Minnesota.

Player 1 could send any amount between $\$ 0$ and $\$ 10$, and Player 2 could return anything between \$0 and \$20.

Average amount sent by Player 1 was $\$ 5,16$.
Average amount returned by Player 2 was $\$ 4,66$.

RESULTS FROM A META-STUDY

These results have been replicated across many other instances and cultures.

Variable name	Obs.	Sum N	Mean
Panel A: Sent fraction (trust)			
All regions	161	23,900	0.502
North America	46	4579	0.517
Europe	64	9030	0.537
Asia	23	3043	0.482
South America	13	4733	0.458
Africa	15	2515	0.456
Panel B: Proportion returned (trustworthiness)			
All regions	137	21,529	0.372
North America	41	4324	0.340
Europe	53	7596	0.382
Asia	15	2361	0.460
South America	13	4733	0.369
Africa	15	2515	0.319

Note that by acting in according to their self interest, players are leaving money (or chocolate) on the table.

Money that could be gotten if Player 2 could muster up some self-restraint (or gratitude), and Player 1 could trust Player 2 to do so.

predicted play with self-interested players
If Player 2 is in the position of allocating the sum
of 4 , they will keep the entire sum (duh).
Player 1, knowing this, realizes there is no point in investing, and keeps the money.

Both players end up with 1 each.

This is an example of a social dilemma.

SOCIAL DILEMMAS

DEFINITION (PRELIMINARY)

A social dilemma is a situation in which individual incentives are at odds with group incentives. Individual rationality leads members of a group to an outcome that is suboptimal.

How to get out of it?

If the two players could write a contract, to be enforced by a strong party, like a scary leviathan, the dilemma is solved.

Humans in their natural state are subject to a social dilemma.

They can't trust each other, so nothing ever gets
done.
We need a strong government to intervene, establish the rule of law, punish knaves, and enforce contracts.

IMMANUEL KANT

Alternatively, people should just act in the way they want everyone else to act.

If you don't want to be taken advantage of, don't do it to others.

Or, if we look at history, perhaps it was the civilizing effect of markets that drew us out of social dilemmas.

MONTESQUIEU
Commerce cures destructive prejudices, and it is an almost general rule that everywhere there are gentle mores, there is commerce and that everywhere there is commerce, there are gentle mores.

For economic activity to thrive, you need people to trust each other.

People may have the knowhow to make things, but if they fear that they will be confiscated by the lord, or stolen by thieves, they produce little.

KENNETH ARROW
Virtually every commercial transaction has within itself an element of trust.
It can be plausibly argued that much of the economic backwardness in the world can be explained by the lack of mutual confidence.

Arrow, K. J. (1972). Gifts and Exchanges. Philosophy \& Public Affairs, 1(4), 343-362.

CAN MOST PEOPLE BE TRUSTED?

There is a correlation between levels of trust and GDP per capita.

There is a similar correlation with levels of inequality.

Interpersonal trust vs. GDP per capita
Share of respondents agreeing with statement "Most people can be trusted". GDP per capita is adjusted for Share of respondents agreeing with statement Most people can
inflation and differences in the cost of living between countries.

Netherlands . Switzerland

Data source: Integrated Values Surveys (2022); World Bank (2023)
Note: For each country, trust data is shown for the latest survey wave in the period 2009-2022. GDP per capita is expressed in
international- $\1 at 2017 prices.

1. International dollars: International dollars are a hypothetical currency that is used to make meaningful comparisons of monetary indicators of living standards. Figures expressed in international dollars are adjusted for inflation within countries over time, and for differences in the cost of living one international dollar can buy the same quantity and quality of goods and services no matter where or when it is spent. Read more in our article: What are Purchasing Power Parity adjustments and why do we need them?

More generally, there are interactions where what is best for you to do depends on what the other does.

And the other way around.

JOHN VON NEUMANN We should call that game theory.

JOHN VON NEUMANN We should call that game theory.

OSKAR MORGENSTERN
And write a classic textbook on it!

JOHN VON NEUMANN

JOHN VON NEUMANN We should call that game theory.

OSKAR MORGENSTERN
And write a classic textbook on it!

JOHN VON NEUMANN

Let's start with the most basic type of game: games in normal form.

A game in normal form consists of players, that have strategies, based on actions, which lead to payoffs.

NOTATION

$$
\begin{aligned}
\text { players } & N=\{1, \ldots, n\} \\
\text { strategy of player } i & s_{i} \\
\text { profile of strategies } & s=\left(s_{1}, \ldots, s_{n}\right) \\
\text { utility of player } i \text { with strategy profile } s & u_{i}(\boldsymbol{s}) \in \mathbb{R} \\
\text { strategy profile } s \text { without } s_{i} & s_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right) \\
s, \text { alternatively } & s=\left(s_{i}, s_{-i}\right)
\end{aligned}
$$

When there are only two players, we can represent the game using a table.

The Trust Game

There are two players with initial endowment of 1 each.

Player 1 makes the first move, by deciding whether to invest in a joint venture.

If Player 1 makes no investment, the game is over and both players retain their endowments.

If Player 1 invests, the 1 generates a surplus and turns into 3.

Player 2 now has to decide how to allocate the available sum of $1+3=4$ among the players.

Player 2 can either divide the sum equally, or keep everything.

The Trust Game

There are two players with initial endowment of 1 each.

Player 1 makes the first move, by deciding whether to invest in a joint venture.

If Player 1 makes no investment, the game is over and both players retain their endowments.

If Player 1 invests, the 1 generates a surplus and turns into 3.

Player 2 now has to decide how to allocate the available sum of $1+3=4$ among the players.

Player 2 can either divide the sum equally, or keep everything.

The Trust Game

There are two players with initial endowment of 1 each.

Player 1 makes the first move, by deciding whether to invest in a joint venture.

If Player 1 makes no investment, the game is over and both players retain their endowments.

If Player 1 invests, the 1 generates a surplus and turns into 3.

Player 2 now has to decide how to allocate the available sum of $1+3=4$ among the players.

Player 2 can either divide the sum equally, or keep everything.

The Trust Game

There are two players with initial endowment of 1 each.

Player 1 makes the first move, by deciding whether to invest in a joint venture.

If Player 1 makes no investment, the game is over and both players retain their endowments.

If Player 1 invests, the 1 generates a surplus and turns into 3 .

Player 2 now has to decide how to allocate the available sum of $1+3=4$ among the players.

Player 2 can either divide the sum

We generally assume that Player 1 is the row Player and player 2 is the column player.

And, for now, that a strategy consists in choosing an available action and playing it.

Oh, and players want to maximize their payoffs in the game.

If we knew what strategies players would play we could go on and compute their utilities, expected utilities and so on.

John von neumann
But that's not how rational agents behave: strategies change depending on what others do.

OSKAR MORGENSTERN
Indeed! If Player 1 invests, the best thing for Player 2 to do is to keep. But if Player 2 plays keep, Player 1 also wants to keep...

John Von neumann
We need to reason the other way around: from utilities to strategies.

We need to reason about solution concepts.

A solution concept describes what strategies we expect the players to play.

And the outcome of the game.

Enter Nash.

Enter Nash.

John Nash.

In a Nash equilibrium no one has an incentive to change their strategy, given the other players' strategies.

BEST RESPONSE \& NASH EQUILIBRIUM

DEFINITION (BEST RESPONSE)

Player i 's best response to the other players' strategies $s_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$ is a strategy s_{i}^{*} such that $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$, for any strategy s_{i} of player i.

BEST RESPONSE \& NASH EQUILIBRIUM

DEFINITION (BEST RESPONSE)

Player i 's best response to the other players' strategies $s_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$ is a strategy s_{i}^{*} such that $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$, for any strategy s_{i} of player i.

DEFINITION (PURE NASH EQUILIBRIUM)

A strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure Nash equilibrium if s_{i}^{*} is a best response to s_{-i}^{*}, for every player i.

In other words, s^{*} is a pure Nash equilibrium if there is no player i and strategy s_{i}^{\prime} such that $u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)$.

And now for the moment we've all been waiting for.

```
The Prisoner's Dilemma
The Prisoner's Dilemma 组
You and a friend are at the police
station. You are the main suspects in a
string of Oktoberfest beer thefts.
You are interrogated at the same time,
in separate rooms.
If both of you stick to the common story
(Cooperate), you get off with a smallish
fine.
But if you tell on your friend (Defect)
you get off free, while they get a hefty
fine.
Your friend faces the same situation.
If you rat each other out, you split the large fine.
```

```
The Prisoner's Dilemma INT
....................................
You and a friend are at the police
station. You are the main suspects in a
string of Oktoberfest beer thefts.
You are interrogated at the same time,
in separate rooms.
If both of you stick to the common story
(Cooperate), you get off with a smallish
fine.
But if you tell on your friend (Defect)
you get off free, while they get a hefty
fine.
Your friend faces the same situation.
If you rat each other out, you split the large fine.

\section*{And the Trust Game?}

\section*{The Trust Game}

There are two players with initial endowment of 1 each.

Player 1 makes the first move, by deciding whether to invest in a joint venture.

If Player 1 makes no investment, the game is over and both players retain their endowments.

pure Nash equilibria

If Player 1 invests, the 1 generates a surplus and turns into 3.

Player 2 now has to decide how to allocate the available sum of \(1+3=4\) among the players.

Player 2 can either divide the sum equally, or keep everything.

\section*{The Trust Game}

pure Nash equilibria (Keep, Keep)

If Player 1 invests, the 1 generates a surplus and turns into 3.

Player 2 now has to decide how to allocate the available sum of \(1+3=4\) among the players.

Player 2 can either divide the sum equally, or keep everything.

Why do women endure the discomfort of high heels?
[Marianne], in baving the advantage of beight, was more striking [than ber sister].

Let's assume that a height advantage makes one more attractive (+3), and a disadvantage is bad ( -3 ).

Let's assume that a height advantage makes one more attractive (+3), and a disadvantage is bad (-3).

And that this boost overweights the discomfort of wearing heels (-2).

Let's assume that a height advantage makes one more attractive (+3), and a disadvantage is bad ( -3 ).

And that this boost overweights the discomfort of wearing heels (-2).

Let's assume that a height advantage makes one more attractive ( +3 ), and a disadvantage is bad ( -3 ).

And that this boost overweights the discomfort of wearing heels (-2).

So everyone adopts high heels.

Let's assume that a height advantage makes one more attractive (+3), and a disadvantage is bad (-3).

And that this boost overweights the discomfort of wearing heels (-2).

So everyone adopts high heels.

Let's assume that a height advantage makes one more attractive ( +3 ), and a disadvantage is bad ( -3 ).

And that this boost overweights the discomfort of wearing heels (-2).

So everyone adopts high heels.
In a world of high heels, showing up without them puts one at a disadvantage.


Let's assume that a height advantage makes one more attractive ( +3 ), and a disadvantage is bad ( -3 ).

And that this boost overweights the discomfort of wearing heels (-2).

So everyone adopts high heels.
In a world of high heels, showing up without them puts one at a disadvantage.

At the Nash equilibrium, everyone puts up with the discomfort... even though the height advantage is gone!

\section*{As in the Trust Game, the Nash equilibrium for the Prisoner's Dilemma leaves utility on the table.}

\section*{As in the Trust Game, the Nash equilibrium for the Prisoner's Dilemma leaves utility on the table.}

Can we make this more precise?

Cooperate
Defect
\begin{tabular}{c|cc} 
& Cooperate & Defect \\
\cline { 2 - 3 } & Cooperate & \(-20,-20\) \\
\hline
\end{tabular}

\section*{Enter Pareto.}


VILFREDO PARETO
How about we look at outcomes where people are (jointly) as welloff as they can be.

In a Pareto optimal outcome no one can be made better off without making someone else worse off.

\section*{PARETO DOMINATION \& OPTIMALITY}

\section*{DEFINITION (PARETO DOMINATION)}

A strategy profile \(s\) Pareto dominates strategy profile \(s^{\prime}\) if:
(i) \(u_{i}(s) \geq u_{i}\left(s^{\prime}\right)\), for every agent \(i\), and
(ii) there exists an agent \(j\) such that \(u_{j}(s)>u_{j}\left(s^{\prime}\right)\).

\section*{PARETO DOMINATION \& OPTIMALITY}

\section*{DEFINITION (PARETO DOMINATION)}

A strategy profile \(s\) Pareto dominates strategy profile \(s^{\prime}\) if:
(i) \(u_{i}(s) \geq u_{i}\left(s^{\prime}\right)\), for every agent \(i\), and
(ii) there exists an agent \(j\) such that \(u_{j}(s)>u_{j}\left(s^{\prime}\right)\).

\section*{DEFINITION (PARETO OPTIMALITY)}

A strategy profile \(s\) is Pareto optimal if there is no (other) strategy profile \(s^{\prime}\) that Pareto dominates \(s\).

\section*{What dominates what in the Trust} Game?


Pareto Optimal strategies

What dominates what in the Trust Game?
(Keep, Keep) and (Keep, Share) are dominated by (Invest, Share).
(Invest, Keep) and (Invest, Share) are not dominated by anything.


\section*{What about the Prisoner's Dilemma?}


Pareto Optimal strategies

\section*{What about the Prisoner's Dilemma?}
(Defect, Defect) is Pareto dominated by (Cooperate, Cooperate).

Everything else is optimal.
Everything but the Nash equilibrium is Pareto optimal!


Pareto Optimal strategies (Cooperate, Cooperate), (Cooperate, Defect), (Defect, Cooperate)

We can now be more precise about social dilemmas.

\section*{SOCIAL DILEMMAS REVISITED}

\section*{DEFINITION}

A social dilemma is a situation in which individual incentives are at odds with group incentives. Individual rationality leads members of a group to an outcome that is suboptimal.

\section*{SOCIAL DILEMMAS REVISITED}

\section*{DEFINITION}

A social dilemma is a situation in which individual incentives are at odds with group incentives. Individual rationality leads members of a group to an outcome that is suboptimal.

More formally, a social dilemma is a game in which the equilibria are Pareto dominated by some other outcome.

Carpenter, J., \& Robbett, A. (2022). Game Theory and Behavior. MIT Press.
Dawes, R. M. (1980). Social Dilemmas. Annual Review of Psychology, 31 (80), 169-193.

Can we just not expect that players will gravitate towards a Pareto-optimal outcome?

\section*{PARETO IS FRAGILE}

Supposing players end up in a situation where both cooperate, they each have a strong incentive to defect.

Pareto-optimal outcomes may not survive, in the long run.


Pareto Optimal strategies
(Cooperate, Cooperate), (Cooperate, Defect), (Defect, Cooperate)

How is this relevant to the problem of cooperation?

\section*{JOHN NASH Note that the numbers in the payoff matrix are not per se relevant.}

What's important is the relationship between them.

The Prisoner's Dilemma
-•••••••••••••樞
payoffs GENERAL VERSION

There are two players, each with two actions: Cooperate or Defect.

If they both cooperate they both get a payoff of \(R\) (the reward).

If they both defect, they each get a payoff of P (the punishment).

In the case of defection with cooperation, the defector gets T (the temptation), while the cooperator gets S (the sucker's payoff).

The relationship between the payoffs is \(T>R>P>S\).

Things become even clearer when considering a simplified version of the Prisoner's Dilemma: the Donation Game.

Nowak, M.A. (2006). Evolutionary Dynamics. Belknap Press

\section*{The Donation Game \\ SPECIAL CASE OF PRISONER'S DILEMMA \\ There are two players, each with two actions: Cooperate or Defect. \\ A cooperator pays a cost c for the other player to receive a benefit \(b\),}

Cooperate

pure Nash equilibria
(Defect, Defect)

Pareto Optimal strategies (Cooperate, Cooperate), (Cooperate, Defect), (Defect, Cooperate)

\section*{A lot of social dilemmas have the structure of a Prisoner's Dilemma.}

Vampire bats face a prisoner's dilemma when having to decide whether to feed their hungry colleagues.

LANCE ARMSTRONG
Sports people too, when deciding whether to take performance enhancing drugs.

Or countries deciding whether to cut down carbon emissions.

MARTIN NOWAK
Indeed, the Prisoner's Dilemma is the paradigmatic game used to study the evolution of cooperation.

We can make the problem of cooperation more precise now.

How can we manage to avoid bad equilibria in social dilemmas?```

