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We want to model the spread of a
disease.



PAUL E. SMALDINO
This Is interesting for the obvious reasons.

=" But many other things behave like diseases, in terms of how
they spread through a society of agents.

Smaldino, P. (2023). Modeling Social Behavior. Mathematical and Agent-Based Models of Social Dynamics and Cultural
Evolution. Princeton University Press.
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EVERETT ROGERS
Like iInnovations!

From hybrid seed corn among Midwest farmers, to the
adoption of ham radio among tech enthusiasts, to the
adoption of new ideas among French intellectuals.

Rogers, E. M. (2003). Diffusion of Innovations, 5th Edition (5th ed.). Free Press.
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SANDER VAN DER LINDEN
Also misinformation!

Grimes, D. R., & van der Linden, S. (2024). Misinformation really does spread like a virus, suggest
mathematical models drawn from epidemiology. The Conversation.



http://theconversation.com/misinformation-really-does-spread-like-a-virus-suggest-mathematical-models-drawn-from-epidemiology-242679
http://theconversation.com/misinformation-really-does-spread-like-a-virus-suggest-mathematical-models-drawn-from-epidemiology-242679

It we look at the data, how do such
things spread?



THE S-SHAPE OF DIFFUSION
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PAUL E. SMALDINO
We'll try to approximate this behavior through a
series of formal models.

Sometimes called compartmental models, because
they put agents in specific boxes.



COMPARTMENTAL MODELS
DESCRIPTION

We have NN agents In an environment.
At any time-step ¢, agents are in one of several possible states.

Infected agents have caught the infection. The number of infected
agents at time ¢ Is ;.

Susceptible agents are not infected, but they can become infected.
The number of susceptible agents at time ¢ Is S;.

Removed, or recovered agents are not infected and they cannot be-
come infected, either because they are immune, or because they are
dead. The number of removed agents at time ¢ is R;.




We're Interested in the dynamics of I;, S; and R; over time.



THE SPONTANEOUS INFECTION MODEL
DESCRIPTION

Only two possible states: susceptible and infected.

At time t, a susceptible agent becomes infected
with probability «.

Movement and social structure play no role.




THE SPONTANEOUS INFECTION MODEL
ANALYSIS

The number of susceptibles at time ¢ are the non-infected agents:

St:N—It.
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THE SPONTANEOUS INFECTION MODEL
ANALYSIS

The number of susceptibles at time ¢ are the non-infected agents:
Sy =N — 1.

The average number of newly infected at time ¢ is oS}, or:
a(N — Iy).

Thus, the number of infected at time ¢ + 1 Is given by the recursion:

Iiy1 =1L + (N — L),




THE SPONTANEOUS INFECTION MODEL
ANALYSIS

The number of susceptibles at time ¢ are the non-infected agents:
Sy =N — 1.

The average number of newly infected at time ¢ is oS}, or:
a(N — Iy).

Thus, the number of infected at time ¢ + 1 Is given by the recursion:
Iivi =1 + a(N — 1),

which, written as a difference equation, gives:

AI — It_|_1 — It
— CI{(N — It)



THE SPONTANEOUS INFECTION MODEL
BEHAVIOR
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We have to keep looking.



THE SI (SUSCEPTIBLE-INFECTED) MODEL
DESCRIPTION

Only two possible states: susceptible and infected.
At time ¢ agents form pairs.

This can be approximated by agents moving
around and getting close to each other. Social
structure now plays a role!

An Infected agent transmits the disease to a nearby
susceptible agent with probability 7.

t+ 1



How does the number of infected agents
change from one time-step to another?



THE SI (SUSCEPTIBLE-INFECTED) MODEL
ANALYSIS

Imagine a random variable X; that keeps track of whether agent i gets infected at time ¢:

) 1,if i gets infected,
] 0, otherwise.

t+ 1



THE SI (SUSCEPTIBLE-INFECTED) MODEL
ANALYSIS

Imagine a random variable X; that keeps track of whether agent i gets infected at time ¢:

. — 1,if 7 gets infected,
"] 0,otherwise.

agent j, Is:

Pr[X; = 1] = Pr|i is susceptible, j is infected, j passes on the infection| T

= Prl[i is susceptible] - Pr[j is infected] - Pr[j passes on the infection]
 N-L I
N N

i "

The probability of agent i getting infected at time ¢, assuming that : bumps into another '/.
t

t+ 1



THE SI (SUSCEPTIBLE-INFECTED) MODEL
ANALYSIS

Imagine a random variable X; that keeps track of whether agent i gets infected at time ¢:

) 1,if i gets infected,
"] 0,otherwise.

The probability of agent : getting infected at time ¢, assuming that i bumps into another
agent j, Is:

Pr[X; = 1] = Pr|i is susceptible, j is infected, j passes on the infection|
= Prl[i is susceptible] - Pr[j is infected] - Pr[j passes on the infection]
N -1, I
-~ N N

i "

The average number of agents becoming infected at time ¢ is, then:

N

> x,

1

E =E[X1]+ -+ E[XxN]

N—1, I,
N nN T

a(i-4)

— N .




THE SI (SUSCEPTIBLE-INFECTED) MODEL
ANALYSIS

Hence, the recursion relation for the number of infectious
agents at time ¢ + 1 Is:

t+ 1



THE SI (SUSCEPTIBLE-INFECTED) MODEL
BEHAVIOR
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We can do better though!



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL

DESCRIPTION

Only two possible states: susceptible and infected. ‘\.
At time t agents form pairs, as iIf from getting close '/.

to each other. ‘1

An infected agent transmits the disease to a nearby
susceptible agent with probability .

An Iinfected agent becomes susceptible again with "
probability ~. ‘

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
ANALYSIS

Apart from the susceptibles that catch the infection, an average of: .

V1

Infected agents become susceptible again at time ¢.

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
ANALYSIS

Apart from the susceptibles that catch the infection, an average of: .

V1

Infected agents become susceptible again at time ¢.

Thus, the recurrence relation becomes:

I
Iy =1 + 711 (1 — ﬁ) — v1¢.

t+ 1



A dynamic equilibrium occurs when the number of infected
agents stabilizes.



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
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DYNAMIC EQUILIBRIUM

The dynamic equilibrium i1s obtained by setting I, = I, = I,
and plugging this into the recurrence relation to get:

I : I
I—I+TI<1W>WI Iff T(lﬁ)—’y

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL

DYNAMIC EQUILIBRIUM

At equilibrium, the number of infections
stabilizes.
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THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
CONTROLLING THE SPREAD

At the beginning of an infection, the number I, of infected ‘\.
agents Is close to 0, hence:

I
1] — — ~ 1.
N

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
CONTROLLING THE SPREAD

At the beginning of an infection, the number I, of infected ‘\.
agents is close to 0, hence:

1 It~1
NN.

Plugging this into the recurrence relation, we have:

N
~ Ly +T1 1y — - 1y
:It+(T—’)/)It

I
Iiv1 =1 + 71 (1 — —t> — 1.

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
CONTROLLING THE SPREAD

At the beginning of an infection, the number I, of infected ‘\.
agents is close to 0, hence:

1 It~1
NN.

Plugging this into the recurrence relation, we have:

N
~ Ly +T1 1y — - 1y
:It+(T—’)/)It

I
Iiv1 =1 + 71 (1 — —t> — 1.

The condition for the infection spreading becomes:

: T
— ff — > 1.
T—7v>0 ’)/> Pl



The basic reproduction number is defined as:

We have just shown that, under the assumptions of the basic SIS
model, infection spreads just in case Ry > 1.



THE REPRODUCTION NUMBER FOR VARIOUS DISEASES

Measles
Poliomyelitis
Rhinovirus
Smallpox
MERS-CoV

The basic reproduction number .

SARS-CoV-1

predicts how many individuals, on iy
average, an infected agent will pass SARS-CoV-2
the disease to. Zika

Ebolavirus
Influenza H2N2 (1957)
Influenza (Spring 1918)
Influenza HIN1 (2009)

0

2

4 6 8 10 12
Basic reproduction number, R,

14

16



What about vaccination?



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
WITH VACCINATION

Only two possible states: susceptible and infected. ‘\.

J A proportion V' of the population starts out vaccinated, which . o
means they are immune. y

@ T

At time ¢ agents form pairs, as if from getting close to each other.

An infected agent transmits the disease to a nearby susceptible

agent with probability 7. }
An infected agent becomes susceptible again with probability ~. ‘

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
WITH VACCINATION: ANALYSIS

Recall how we keep track of infected agents:

] 1,1f i gets infected,
* 10, otherwise.

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
WITH VACCINATION: ANALYSIS

Recall how we keep track of infected agents:

Y _ 1,if 7 gets infected,
* 10, otherwise.

With vaccination, the probability of agent ¢ getting infected by j at time
t depends on 7 being unvaccinated:

Pr[X; = 1] = Pr|i is susceptible, 7 is unvaccinated, j is infected,
j passes on the infection]
N — I,
-~ N

(1=V)  —=-T.

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
WITH VACCINATION: ANALYSIS

Recall how we keep track of infected agents:

Y _ 1,if 7 gets infected,
* 10, otherwise.

With vaccination, the probability of agent ¢ getting infected by j at time
t depends on 7 being unvaccinated:

Pr[X; =1 =Pr [z Is susceptible, 7 iIs unvaccinated, j Is infected,

7 passes on the infection]
B N — 1;

~ (1=V)  —=-T.

Thus, the average number of newly infected agents at ¢ is:

. (1— %) (1- V),

t+ 1



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL

WITH VACCINATION: WHEN DOES IT SPREAD?
With vaccinated agents, the recurrence relation for the change in infected agents is:

I
It—I—l = It —+ 7 (]_ — Nt) (]_ — V)It — "}/It '}} '/.

Approximating 1 — I:/~ with 1 again, the condition for the infection spreading is: /

r1=V)—~>0 iff 2(1—V)>1

iff Ro(l—V)> 1. }

t+ 1




The effective basic reproductive number is:

T0 :Ro(l—V)
= (1-V),

We have just shown that the infection spreads just in case rg > 1.



THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL
WITH VACCINATION: CONTROLLING THE SPREAD

The infection does not spread just in case:

. 1
Ro(l—V)Sl iff 1 -V < — H
: 1
ff V>1-—- —. Er
R N

The smallest value for which the infection does not spread, called the threshold vaccina-
tion rate for herd immunity, is:

1 S
V¥ =1-— —.
Ry

t+ 1




THE SIR (SUSCEPTIBLE-INFECTED-RECOVERED) MODEL

DESCRIPTION

At time ¢t agents form pairs, as iIf from getting close to each other. y '/.

Three possible states: susceptible, infected and removed

An infected agent transmits the disease to a nearby susceptible ¢
agent with probability 7.

An infected agent becomes removed with probability 7. }

t+ 1




THE SIR (SUSCEPTIBLE-INFECTED-RECOVERED) MODEL

ANALYSIS
The dynamics are given by the following recurrence relations: ‘\.
St—|—1 — St — TStNtJ

Ji
Ii41 :It‘|‘TStNt — 1y,
Ri11 = Ry + 71z ¢

Written as difference equations:

1
AS = —’TStN,
Al = Si — vl
— T N VLt
AR =~I.

t+ 1



THE SIR (SUSCEPTIBLE-INFECTED-RECOVERED) MODEL

BEHAVIOR

The SIR model approximates the dynamics
of real epidemics.
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