Adrian Haret a.haret@lmu.de

MODEL AGENTS: SOCIAL BEHAVIOR THROUGH THE FORMAL LENS

COUGH COUGH CONTAGION MODELS

We want to model the spread of a disease.

This is interesting for the obvious reasons. PAUL E. SMALDINO

But many other things behave like diseases, in terms of how they spread through a society of agents.

Smaldino, P. (2023). *Modeling Social Behavior. Mathematical and Agent-Based Models of Social Dynamics and Cultural Evolution*. Princeton University Press.

This is interesting for the obvious reasons. PAUL E. SMALDINO

But many other things behave like diseases, in terms of how they spread through a society of agents.

Smaldino, P. (2023). *Modeling Social Behavior. Mathematical and Agent-Based Models of Social Dynamics and Cultural Evolution*. Princeton University Press.

EVERETT ROGERS Like innovations!

From hybrid seed corn among Midwest farmers, to the adoption of ham radio among tech enthusiasts, to the adoption of new ideas among French intellectuals.

Rogers, E. M. (2003). *Diffusion of Innovations, 5th Edition (5th ed.)*. Free Press.

This is interesting for the obvious reasons. PAUL E. SMALDINO

But many other things behave like diseases, in terms of how they spread through a society of agents.

Smaldino, P. (2023). *Modeling Social Behavior. Mathematical and Agent-Based Models of Social Dynamics and Cultural Evolution*. Princeton University Press.

EVERETT ROGERS Like innovations!

From hybrid seed corn among Midwest farmers, to the adoption of ham radio among tech enthusiasts, to the adoption of new ideas among French intellectuals.

Rogers, E. M. (2003). *Diffusion of Innovations, 5th Edition (5th ed.)*. Free Press.

Also misinformation! SANDER VAN DER LINDEN

Grimes, D. R., & van der Linden, S. (2024). [Misinformation](http://theconversation.com/misinformation-really-does-spread-like-a-virus-suggest-mathematical-models-drawn-from-epidemiology-242679) really does spread like a virus, suggest [mathematical](http://theconversation.com/misinformation-really-does-spread-like-a-virus-suggest-mathematical-models-drawn-from-epidemiology-242679) models drawn from epidemiology. *The Conversation*.

If we look at the data, how *do* such things spread?

THE S-SHAPE OF DIFFUSION

Rogers, E. M. (2003). *Diffusion of Innovations, 5th Edition (5th ed.)*. Free Press.

Many patterns of diffusion follow an S-shape.

We'll try to approximate this behavior through a series of formal models. PAUL E. SMALDINO

Sometimes called *compartmental models*, because they put agents in specific boxes.

COMPARTMENTAL MODELS DESCRIPTION

We have N agents in an environment.

At any time-step t , agents are in one of several possible states.

Infected agents have caught the infection. The number of infected agents at time t is I_t .

Susceptible agents are not infected, but they can become infected. The number of susceptible agents at time t is S_t .

Removed, or recovered agents are not infected and they cannot become infected, either because they are immune, or because they are dead. The number of removed agents at time t is R_t .

We're interested in the dynamics of I_t , S_t and R_t over time.

 $\bullet\bullet\bullet$

DESCRIPTION **THE SPONTANEOUS INFECTION MODEL**

Only two possible states: susceptible and infected.

At time t , a susceptible agent becomes infected with probability α .

Movement and social structure play no role.

The number of susceptibles at time t are the non-infected agents:

$$
S_t = N - I_t.
$$

The number of susceptibles at time t are the non-infected agents:

$$
S_t = N - I_t.
$$

The average number of newly infected at time t is αS_t , or:

 $\alpha(N-I_t).$

The number of susceptibles at time t are the non-infected agents:

$$
S_t = N - I_t.
$$

The average number of newly infected at time t is αS_t , or:

$$
\alpha(N-I_t).
$$

Thus, the number of infected at time $t+1$ is given by the recursion:

$$
I_{t+1} = I_t + \alpha (N - I_t),
$$

The number of susceptibles at time t are the non-infected agents:

$$
S_t = N - I_t.
$$

The average number of newly infected at time t is αS_t , or:

$$
\alpha(N-I_t).
$$

Thus, the number of infected at time $t+1$ is given by the recursion:

$$
I_{t+1} = I_t + \alpha (N - I_t),
$$

which, written as a difference equation, gives:

$$
\Delta I = I_{t+1} - I_t
$$

= $\alpha (N - I_t)$.

THE SPONTANEOUS INFECTION MODEL BEHAVIOR

When we plot the proportion of infected agents over time, we do not see the S-shape we are looking for.

We have to keep looking.

THE SI (SUSCEPTIBLE-INFECTED) MODEL **DESCRIPTION**

Only two possible states: susceptible and infected.

At time t agents form pairs.

This can be approximated by agents moving around and getting close to each other. Social structure now plays a role!

An infected agent transmits the disease to a nearby susceptible agent with probability τ .

How does the number of infected agents change from one time-step to another?

Imagine a random variable X_i that keeps track of whether agent i gets infected at time t :

 $X_i = \begin{cases} 1, \text{if } i \text{ gets infected}, \\ 0, \text{otherwise}. \end{cases}$

Imagine a random variable X_i that keeps track of whether agent i gets infected at time t :

$$
X_i = \begin{cases} 1, \text{if } i \text{ gets infected}, \\ 0, \text{otherwise}. \end{cases}
$$

The probability of agent i getting infected at time t , assuming that i bumps into another agent j , is:

 $Pr[X_i = 1] = Pr[i$ is susceptible, j is infected, j passes on the infection $= Pr[i]$ is susceptible $\cdot Pr[j]$ is infected $\cdot Pr[j]$ passes on the infection $= \frac{N - I_t}{N} \cdot \frac{I_t}{N} \cdot \tau.$

Imagine a random variable X_i that keeps track of whether agent i gets infected at time t :

$$
X_i = \begin{cases} 1, \text{if } i \text{ gets infected}, \\ 0, \text{otherwise}. \end{cases}
$$

The probability of agent i getting infected at time t , assuming that i bumps into another agent j , is:

$$
\Pr[X_i = 1] = \Pr[i \text{ is susceptible}, j \text{ is infected}, j \text{ passes on the infection}] \\
= \Pr[i \text{ is susceptible}] \cdot \Pr[j \text{ is infected}] \cdot \Pr[j \text{ passes on the infection}] \\
= \frac{N - I_t}{N} \cdot \frac{I_t}{N} \cdot \tau.
$$

The average number of agents becoming infected at time t is, then:

$$
\mathbb{E}\left[\sum_{1}^{N} X_{i}\right] = \mathbb{E}[X_{1}] + \dots + \mathbb{E}[X_{N}]
$$

$$
= N \cdot \frac{N - I_{t}}{N} \cdot \frac{I_{t}}{N} \cdot \tau
$$

$$
= \tau I_{t} \left(1 - \frac{I_{t}}{N}\right).
$$

Hence, the recursion relation for the number of infectious agents at time $t+1$ is:

$$
I_{t+1} = I_t + \tau I_t \left(1 - \frac{I_t}{N}\right).
$$

THE SI (SUSCEPTIBLE-INFECTED) MODEL BEHAVIOR

We see the desired S-shape. Social influence has done the trick!

proportion adopting (I/N) 0.75 0.50

1.00

 0.00

 0.25

We can do better though!

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **DESCRIPTION**

Only two possible states: susceptible and infected.

At time t agents form pairs, as if from getting close to each other.

An infected agent transmits the disease to a nearby susceptible agent with probability τ .

An infected agent becomes susceptible again with probability γ .

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **ANALYSIS**

Apart from the susceptibles that catch the infection, an average of:

 γI_t

infected agents become susceptible again at time t .

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **ANALYSIS**

Apart from the susceptibles that catch the infection, an average of:

 γI_t

infected agents become susceptible again at time t .

Thus, the recurrence relation becomes:

$$
I_{t+1} = I_t + \tau I_t \left(1 - \frac{I_t}{N} \right) - \gamma I_t.
$$

A dynamic equilibrium occurs when the number of infected agents stabilizes.

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL DYNAMIC EQUILIBRIUM

The dynamic equilibrium is obtained by setting $I_{t+1} = I_t = I$, and plugging this into the recurrence relation to get:

$$
I = I + \tau I \left(1 - \frac{I}{N} \right) - \gamma I \quad \text{iff} \quad \tau \left(1 - \frac{I}{N} \right) = \gamma
$$
\n
$$
\text{iff} \quad \frac{I}{N} = 1 - \frac{\gamma}{\tau}.
$$

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL DYNAMIC EQUILIBRIUM

At equilibrium, the number of infections stabilizes.

CONTROLLING THE SPREAD **THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL**

At the beginning of an infection, the number I_t of infected agents is close to 0, hence:

$$
1 - \frac{I_t}{N} \approx 1.
$$

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **CONTROLLING THE SPREAD**

At the beginning of an infection, the number I_t of infected agents is close to 0, hence:

$$
1-\frac{I_t}{N}\approx 1.
$$

Plugging this into the recurrence relation, we have:

$$
I_{t+1} = I_t + \tau I_t \left(1 - \frac{I_t}{N} \right) - \gamma I_t.
$$

\n
$$
\approx I_t + \tau \cdot I_t - \gamma \cdot I_t
$$

\n
$$
= I_t + (\tau - \gamma)I_t.
$$

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **CONTROLLING THE SPREAD**

At the beginning of an infection, the number I_t of infected agents is close to 0, hence:

$$
1-\frac{I_t}{N}\approx 1.
$$

Plugging this into the recurrence relation, we have:

$$
I_{t+1} = I_t + \tau I_t \left(1 - \frac{I_t}{N} \right) - \gamma I_t.
$$

\n
$$
\approx I_t + \tau \cdot I_t - \gamma \cdot I_t
$$

\n
$$
= I_t + (\tau - \gamma)I_t.
$$

The condition for the infection spreading becomes:

$$
\tau-\gamma>0\quad\text{iff}\quad\frac{\tau}{\gamma}>1.
$$

The basic reproduction number is defined as:

$$
R_0 = \frac{\tau}{\gamma}.
$$

We have just shown that, under the assumptions of the basic SIS model, infection spreads just in case $R_0 > 1$.

THE REPRODUCTION NUMBER FOR VARIOUS DISEASES

The basic reproduction number predicts how many individuals, on average, an infected agent will pass the disease to.

What about vaccination?

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **WITH VACCINATION**

Only two possible states: susceptible and infected.

A proportion V of the population starts out vaccinated, which means they are immune.

At time t agents form pairs, as if from getting close to each other.

An infected agent transmits the disease to a nearby susceptible agent with probability τ .

An infected agent becomes susceptible again with probability γ .

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **WITH VACCINATION: ANALYSIS**

Recall how we keep track of infected agents:

 $X_i = \begin{cases} 1, \text{if } i \text{ gets infected},\\ 0, \text{otherwise}. \end{cases}$

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **WITH VACCINATION: ANALYSIS**

Recall how we keep track of infected agents:

 $X_i = \begin{cases} 1, \text{if } i \text{ gets infected},\\ 0, \text{otherwise}. \end{cases}$

With vaccination, the probability of agent i getting infected by j at time t depends on i being unvaccinated:

 $Pr[X_i = 1] = Pr[i$ is susceptible, *i* is unvaccinated, *j* is infected, j passes on the infection] $\tau = \frac{N - I_t}{N} \cdot (1 - V) \cdot \frac{I_t}{N} \cdot \tau.$

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL **WITH VACCINATION: ANALYSIS**

Recall how we keep track of infected agents:

$$
X_i = \begin{cases} 1, \text{if } i \text{ gets infected}, \\ 0, \text{otherwise}. \end{cases}
$$

With vaccination, the probability of agent i getting infected by j at time t depends on i being unvaccinated:

 $Pr[X_i = 1] = Pr[i$ is susceptible, *i* is unvaccinated, *j* is infected, j passes on the infection] $= \frac{N - I_t}{N} \cdot (1 - V) \cdot \frac{I_t}{N} \cdot \tau.$

Thus, the average number of newly infected agents at t is:

$$
\tau\left(1-\frac{I_t}{N}\right)(1-V)I_t
$$

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL WITH VACCINATION: WHEN DOES IT SPREAD?

With vaccinated agents, the recurrence relation for the change in infected agents is:

$$
I_{t+1} = I_t + \tau \left(1 - \frac{I_t}{N}\right)(1 - V)I_t - \gamma I_t.
$$

Approximating $1 - I_t/N$ with 1 again, the condition for the infection spreading is:

$$
\tau(1-V) - \gamma > 0 \quad \text{iff} \quad \frac{\tau}{\gamma}(1-V) > 1
$$

$$
\text{iff} \quad R_0(1-V) > 1.
$$

$$
r_0 = R_0(1 - V)
$$

=
$$
\frac{\tau}{\gamma}(1 - V).
$$

The effective basic reproductive number is: We have just shown that the infection spreads just in case $r_0 > 1$.

THE SIS (SUSCEPTIBLE-INFECTED-SUSCEPTIBLE) MODEL WITH VACCINATION: CONTROLLING THE SPREAD

The infection does not spread just in case:

$$
R_0(1-V) \le 1
$$
 iff $1-V \le \frac{1}{R_0}$
iff $V \ge 1 - \frac{1}{R_0}$.

The smallest value for which the infection does not spread, called the threshold vaccination rate for herd immunity, is:

$$
V^* = 1 - \frac{1}{R_0}.
$$

THE SIR (SUSCEPTIBLE-INFECTED-RECOVERED) MODEL **DESCRIPTION**

Three possible states: susceptible, infected and removed

At time t agents form pairs, as if from getting close to each other.

An infected agent transmits the disease to a nearby susceptible agent with probability τ .

An infected agent becomes removed with probability τ .

THE SIR (SUSCEPTIBLE-INFECTED-RECOVERED) MODEL **ANALYSIS**

The dynamics are given by the following recurrence relations:

$$
S_{t+1} = S_t - \tau S_t \frac{I_t}{N},
$$

\n
$$
I_{t+1} = I_t + \tau S_t \frac{I_t}{N} - \gamma I_t,
$$

\n
$$
R_{t+1} = R_t + \gamma I_t.
$$

Written as difference equations:

$$
\Delta S = -\tau S_t \frac{I}{N},
$$

\n
$$
\Delta I = \tau S \frac{I}{N} - \gamma I_t,
$$

\n
$$
\Delta R = \gamma I.
$$

THE SIR (SUSCEPTIBLE-INFECTED-RECOVERED) MODEL BEHAVIOR

The SIR model approximates the dynamics of real epidemics.

 A proportion of population

