

Adrian Haret
a.haret@1mu.de

November 29 December 6, 2023

NORTH AMERICA 1776

NORTH AMERICA
 1776

Thirteen colonies have had enough of being ruled by the British monarch.

And decide to splinter off into an independent state.

But the Founding Fathers discover that independence comes with its own set of problems...

How will the constituent states be represented at the national level?

THECONNECTICUT COMPROMISE

 $1787=$

THE CONNECTICUT COMPROMISE
 1787

States will be represented in the House of Representatives in a manner proportional to their population.

THE US CONSTITUTION
 1789

Representatives [...] shall be apportioned among the several States [...] according to their respective Numbers.

The Number of Representatives shall not exceed one for every thirty Thousand, but each State shall bave at Least one Representative...

US Constitution (1789), Article I, Section 2, Clause 3

THE FIRST US CENSUS

 1790Fifteen states.

THE FIRST US CENSUS
state population 1790

Fifteen states.

state	population
Connecticut	236,841
Delaware	55,540
Georgia	70,835
Kentucky	68,705
Maryland	278,514
Massachusetts	475,327
New Hampshire	141,822
New Jersey	179,570
New York	331,589
North Carolina	353,523
Pennsylvania	432,879
Rhode Island	68,446
South Carolina	206,236
Vermont	85,533
Virginia	630,560
US (total)	$3,615,920$

THE FIRST US CENSUS

state population
1790

state	population
Connecticut	236,841
Delaware	55,540
Georgia	70,835
Kentucky	68,705
Maryland	278,514
Massachusetts	475,327
New Hampshire	141,822
New Jersey	179,570
New York	331,589
North Carolina	353,523
Pennsylvania	432,879
Rhode Island	68,446
South Carolina	206,236
Vermont	85,533
Virginia	630,560
US (total)	$3,615,920$

This makes things tricky...

US CONGRESS, HARD AT WORK ~ 1790

US CONGRESS, HARD AT WORK ~1790

Take one representative for every d persons, then let the number of representatives (bouse size) fall where it may.

state	population
Connecticut	236,841
Delaware	55,540
Georgia	70,835
Kentucky	68,705
Maryland	278,514
Massachusetts	475,327
New Hampshire	141,822
New Jersey	179,570
New York	331,589
North Carolina	353,523
Pennsylvania	432,879
Rhode Island	68,446
South Carolina	206,236
Vermont	85,533
Virginia	630,560
US (total)	$3,615,920$

state	population population/d	
Connecticut	236,841	7.895
Delaware	55,540	1.851
Georgia	70,835	2.361
Kentucky	68,705	2.29
Maryland	278,514	9.284
Massachusetts	475,327	15.844
New Hampshire	141,822	4.727
New Jersey	179,570	5.986
New York	331,589	11.053
North Carolina	353,523	11.784
Pennsylvania	432,879	14.429
Rhode Island	68,446	2.282
South Carolina	206,236	6.875
Vermont	85,533	2.851
Virginia	630,560	21.019
US (total)	$3,615,920$	120.531

state	population population/d		seats
Connecticut	236,841	7.895	$?$
Delaware	55,540	1.851	$?$
Georgia	70,835	2.361	$?$
Kentucky	68,705	2.29	$?$
Maryland	278,514	9.284	$?$
Massachusetts	475,327	15.844	$?$
New Hampshire	141,822	4.727	$?$
New Jersey	179,570	5.986	$?$
New York	331,589	11.053	$?$
North Carolina	353,523	11.784	$?$
Pennsylvania	432,879	14.429	$?$
Rhode Island	68,446	2.282	$?$
South Carolina	206,236	6.875	$?$
Vermont	85,533	2.851	$?$
Virginia	630,560	21.019	$?$
US (total)	$3,615,920$	120.531	$?$

US CONGRESS, HARD AT WORK ~1790

Let's just drop the fractions!

House Apportionment Bill of 1792

state	population	population/d	seats
Connecticut	236,841	7.895	7
Delaware	55,540	1.851	1
Georgia	70,835	2.361	2
Kentucky	68,705	2.29	2
Maryland	278,514	9.284	9
Massachusetts	475,327	15.844	15
New Hampshire	141,822	4.727	4
New Jersey	179,570	5.986	5
New York	331,589	11.053	11
North Carolina	353,523	11.784	11
Pennsylvania	432,879	14.429	14
Rhode Island	68,446	2.282	2
South Carolina	206,236	6.875	6
Vermont	85,533	2.851	2
Virginia	630,560	21.019	21
US (total)	$3,615,920$	120.531	112

Note that dropping of fractions tends to favor larger states.

Note that dropping of fractions tends to favor larger states.

We can see this by looking at the representation ratio, i.e., the number of people per representative a state gets from a particular assignment.

Large State Bias

Delaware vs Massachusetts

Dropping fractions hits different states differently.

Delaware ends up getting one seat for 55540 people, Massachusetts gets one seat for 31688 persons.

Every resident of Delaware has a 43\% smaller share of representation in the House than a resident of Massachusetts.

	state	population population/d	seats	repr. ratio
Connecticut	236,841	7.895	7	33834.43
Delaware	55,540	1.851	1	55540
	Ceorgia	70,835	2.361	2

The Senate disagreed with the House bill and proposed a different apportionment, by raising the divisor to 33000.
by the constitution, a divisor
smaller than 3000 is not
allowed

Senate Apportionment Bill of 1792

Choose a divisor d, the desired number of people per representative

 $d=33000$.
Calculate each state's quota

The quota of a state, i.e., its population divided by d, indicates the number of representatives the states deserves.

Drop fractions and assign seats

Leads to a house of size 105.

state	population population/d	seats	repr. ratio	
Connecticut	236,841	7.177	7	33834.43
Delaware	55,540	1.683	1	55540
Georgia	70,835	2.147	2	35417.5
Kentucky	68,705	2.082	2	34352.5
Maryland	278,514	8.44	8	34814.25
Massachusetts	475,327	14.404	14	33951.93
New Hampshire	141,822	4.298	4	35455.5
New Jersey	179,570	5.442	5	35914
New York	331,589	10.048	10	33158.9
North Carolina	353,523	10.713	10	35352.3
Pennsylvania	432,879	13.118	13	33298.38
Rhode Island	68,446	2.074	2	34223
South Carolina	206,236	6.25	6	34372.67
Vermont	85,533	2.592	2	42766.5
Virginia	630,560	19.108	19	33187.37
US (total)	$3,615,920$	109.573	105	34437.333

All the wrangling over divisors came across as silly.

Edmund Ranolph
 1753-1813

Founding father of the United States, attorney, seventh governor of Virginia.

Thought the hunt for divisors was silly.
"Sir, it gave me pain to find these woorthy members calculating and coldly applying rules of arithmetic to a subject beyond the power of numbers to express the degree of its, importance to their fellow citizens."

At the same time, every state fought fiercely for every seat.

The dispute had added weight given the growing divide between North and South.

Enter Hamilton.

Alexander Hamilton 1757-1804

Founding father of the United States.
Played a key role in securing America's independence, and pushing through the Constitution.

Died in a duel with political rival Aaron Burr.

These days, famous mostly for starring in musicals.

ALEXANDER HAMILTON
The whole number of Representatives being first fixed, they sball be apportioned to any state according to its census...

This number should probs be 120, approx. corresponding to the total population of the US divided by 30000 .

Let us call this the true, or standard, quota.
... the Rule of Three will show what part of the representation any State shall bave...

In other words, the total number of seats to be distributed should be fixed in advance.

The share of each state is then calculated in proportion to its percentage of the population.

Glossary of Terms

states $\quad N=\{1, \ldots, n\}$
population of state $i \quad p_{i}$
total population $\quad p=p_{1}+\ldots+p_{n}$
number of seats to be allocated
seats allocated to state i
divisor d
quota of state i, for divisor d standard (true) quota of state i upper quota of state i lower quota of state i
k_{i}
k
$\hat{q}_{i}=p_{i} / d$
$q_{i}=p_{i} / p \cdot k$
$\left\lceil q_{i}\right\rceil$, i.e., q_{i} rounded up to the nearest integer
$\left\lfloor q_{i}\right\rfloor$, i.e., q_{i} rounded down to the nearest integer

ALEXANDER HAMILTON
 Fix the number k of seats to be allocated.

Start by giving each state its lower standard quota.
If there are seats that remain to be allocated, look at the residue of each state:

$$
r_{i}=q_{i}-\left\lfloor q_{i}\right\rfloor
$$

Distribute the remaining seats (one each) to the states with the largest residues.
$d=30132.67$

Hamilton's Method

Every state gets its lower standard quota

There are 9 remaining seats to be allocated.

			$d=30132.67$	
state	population population/d	seats	rep. ratio	
Connecticut	236,841	7.86	7	33834.43
Delaware	55,540	1.843	1	55540
Ceorgia	70,835	2.351	2	35417.5
Kentucky	68,705	2.28	2	34352.5
Maryland	278,514	9.243	9	30946
Massachusetts	475,327	15.774	15	31688.47
New Hampshire	141,822	4.707	4	35455.5
New Jersey	179,570	5.959	5	35914
New York	331,589	11.004	11	30144.45
North Carolina	353,523	11.732	11	32138.45
Pennsylvania	432,879	14.366	14	30919.93
Rhode Island	68,446	2.271	2	34223
South Carolina	206,236	6.844	6	34372.67
Vermont	85,533	2.839	2	42766.5
Virginia	630,560	20.926	20	31528
US (total)	$3,615,920$	120	111	32575.856

Hamilton's Method

Every state gets its lower standard quota

There are 9 remaining seats to be allocated.

Order states by remainder

Connecticut, Delaware, Massachusetts, New Hampshire, New Jersey, North Carolina, South Carolina, Vermont and Virginia are the 9 states with the highest remainders.

state	population population/d	seats	repr. ratio	
Connecticut	236,841	7.86	7	33834.43
Delaware	55,540	1.843	1	55540
Georgia	70,835	2.351	2	35417.5
Kentucky	68,705	2.28	2	34352.5
Maryland	278,514	9.243	9	30946
Massachusetts	475,327	15.774	15	31688.47
New Hampshire	141,822	4.707	4	35455.5
New Jersey	179,570	5.959	5	35914
New York	331,589	11.004	11	30144.45
North Carolina	353,523	11.732	11	32138.45
Pennsylvania	432,879	14.366	14	30919.93
Rhode Island	68,446	2.271	2	34223
South Carolina	206,236	6.844	6	34372.67
Vermont	85,533	2.839	2	42766.5
Virginia	630,560	20.926	20	31528
US (total)	$3,615,920$	120	111	32575.856

Hamilton's Method

Every state gets its lower standard quota

There are 9 remaining seats to be allocated.

Order states by remainder

Connecticut, Delaware, Massachusetts, New Hampshire, New Jersey, North Carolina, South Carolina, Vermont and Virginia are the 9 states with the highest remainders.

Allocate the remaining seats

These states get an extra seat each.

	state	population population/d	seats	repr. ratio
Connecticut	236,841	7.86	8	29605.13
Delaware	55,540	1.843	2	27770
Georgia	70,835	2.351	2	35417.5
Kentucky	68,705	2.28	2	34352.5
Maryland	278,514	9.243	9	30946
Massachusetts	475,327	15.774	16	29707.94
New Hampshire	141,822	4.707	5	28364.4
New Jersey	179,570	5.959	6	29928.33
New York	331,589	11.004	11	30144.45
North Carolina	353,523	11.732	12	29460.25
Pennsylvania	432,879	14.366	14	30919.93
Rhode Island	68,446	2.271	2	34223
South Carolina	206,236	6.844	7	29462.29
Vermont	85,533	2.839	3	28511
Virginia	630,560	20.926	21	30026.67
US (total)	$3,615,920$	120	120	30132.667

A compromise bill with this exact

 apportionment was passed by narrow majorities on March 26, 1792.
A compromise bill with this exact

 apportionment was passed by narrow majorities on March 26, 1792.All that remained was for President George Washington to sign it.

A compromise bill with this exact

 apportionment was passed by narrow majorities on March 26, 1792.All that remained was for President George Washington to sign it.

He had until April 5 to make a decision...

Enter Washington.

George Washington
 1732-1799

Founding father of the United States, general, first president.

Defeated the British, ensuring the independence of the US.

Refused the title of king, stayed on for two spells as president.

Father of the nation.

ALEXANDER HAMILTON
Ob for sure!
It results from a logical method, that woorks for any situation...

GEORGE WASHINGTON
 So I guess I should sign the compromise bill?

ALEXANDER HAMILTON
Ob for sure!
It results from a logical method, that woorks for any situation...

Enter Jefferson.

Thomas Jefferson
 1743-1826

Founding father, primary author of the Declaration of Independence, secretary
of state under George Washington.
Went on to become the third president of the US.

During his tenure the US would double in size.

Lives on as the face on the nickel, as a member of the Mount Rushmore four, and as a champion of freedom and democracy (who also owned slaves).

THOMAS JEFFERSON Hamilton's doctrine of fractions is difficult and unobvious. Hamilton's doctrine of fractions is difficult and unobvious.

EDMUND RANDOLPH

I agree! Hamilton's doctrine of fractions is difficult and unobvious.

EDMUND RANDOLPH

I agree!
In fact, by Hamilton's method, all states whose delegation is rounded up get more than one representative for 30000 residents.

For instance, New Hampshire would get one representative per 28364 citizens.

New Hampshire	141,822	4.707	5	28364.4

This is unconstitutional!

Interestingly, both Jefferson and Randolph

 hailed from Virginia, a state that would not benefit from rounding up.
Interestingly, both Jefferson and Randolph hailed from Virginia, a state that would not benefit from rounding up.

But surely that was a coincidence...

GEORGE WASHINGTON

 What a nuisance!This apportionment issue is pitching Northern states versus Southern states.

But I do not woant to take a side.

April 5 arrives and

 Washington is yet to make a decision...
george washington Jefferson! In my office! Now!

THOMAS JEFFERSON

THOMAS JEFFERSON
But I bave not even bad breakfast yet...

GEORGE WASHINGTON Jefferson! In my office! Now!

THOMAS JEFFERSON
But I bave not even bad breakfast yet...

GEORGE WASHINGTON Jefferson! In my office! Now!

THOMAS JEFFERSON
But I bave not even bad breakfast yet...

THOMAS JEFFERSON
You should negative the bill...

Washington vetoes the bill (!).

0
THOMAS JEFFERSON
$\bullet \bullet-$

THOMAS JEFFERSON
Here's what I propose.

GEORGE WASHINGTON
 What now?

THOMAS JEFFERSON
Here's what I propose.
Start woith the desired number of seats k.
Find a divisor d such that:

$$
\left\lfloor\frac{p_{1}}{d}\right\rfloor+\ldots+\left\lfloor\frac{p_{n}}{d}\right\rfloor=k
$$

State igets $\left\lfloor p_{i} / d\right\rfloor$ seats.

Jefferson's Method

Choose the house size
Say we want $k=120$ seats.

state	population population/d	seats	repr. ratio
Connecticut	236,841		
Delaware	55,540		
Georgia	70,835		
Kentucky	68,705		
Maryland	278,514		
Massachusetts	475,327		
New Hampshire	141,822		
New Jersey	179,570		
New York	331,589		
North Carolina	353,523		
Pennsylvania	432,879		
Rhode Island	68,446		
South Carolina	206,236		
Vermont	85,533		

Jefferson's Method

Choose the house size
Say we want $k=120$ seats.

Find the right divisor

30000 doesn't work, use $d=28500$.*
*For this case any divisor between 28356 and 28511 works.

| state | population population/d | seats | repr. ratio |
| ---: | ---: | ---: | ---: | ---: |
| Connecticut | 236,841 | 8.31 | |
| Delaware | 55,540 | 1.949 | |
| Georgia | 70,835 | 2.485 | |
| Kentucky | 68,705 | 2.411 | |
| Maryland | 278,514 | 9.772 | |
| Massachusetts | 475,327 | 16.678 | |
| New Hampshire | 141,822 | 4.976 | |
| New Jersey | 179,570 | 6.301 | |
| New York | 331,589 | 11.635 | |
| North Carolina | 353,523 | 12.404 | |
| Pennsylvania | 432,879 | 15.189 | |
| Rhode Island | 68,446 | 2.402 | |
| South Carolina | 206,236 | 7.236 | |
| Vermont | 85,533 | 3.001 | |
| Virginia | 630,560 | 22.125 | |
| US (total) | $3,615,920$ | 126.874 | 120 |

Jefferson's Method

Choose the house size

Say we want $k=120$ seats.

Find the right divisor

30000 doesn't work, use $d=28500$.*
*For this case any divisor between 28356 and 28511 works.

Assign seats

Round down.

state	population population/d	seats	$d=28500$ repr. ratio	
Connecticut	236,841	8.31	8	29605.13
Delaware	55,540	1.949	1	55540
Georgia	70,835	2.485	2	35417.5
Kentucky	68,705	2.411	2	34352.5
Maryland	278,514	9.772	9	30946
Massachusetts	475,327	16.678	16	29707.94
New Hampshire	141,822	4.976	4	35455.5
New Jersey	179,570	6.301	6	29928.33
New York	331,589	11.635	11	30144.45
North Carolina	353,523	12.404	12	29460.25
Pennsylvania	432,879	15.189	15	28858.6
Rhode Island	68,446	2.402	2	34223
South Carolina	206,236	7.236	7	29462.29
Vermont	85,533	3.001	3	28511
Virginia	630,560	22.125	22	28661.82
US (total)	$3,615,920$	126.874	120	30132.667

Jefferson's Method

Choose the house size
Say we want $k=120$ seats.

Find the right divisor

30000 doesn't work, use $d=28500$.*
*For this case any divisor between 28356 and 28511 works.

Assign seats

Round down.

| state | population population/d | seats | $d=28500$
 repr.ratio | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Connecticut | 236,841 | 8.31 | 8 | 29605.13 |
| Delaware | 55,540 | 1.949 | 1 | 55540 |

GEORGE WASHINGTON
 No bueno! A representation ratio smaller than 30000 landed us in this mess in the first place!

GEORGE WASHINGTON No bueno! A representation ratio smaller than 30000 landed us in this mess in the first place!

THOMAS JEFFERSON

My bad!
To get better representation ratios we'll need to raise the divisor.

A bigger divisor leads to a smaller bouse though...

Two days later a new bill was proposed, using Jefferson's method with a divisor of 33000 and a house size of 105.

Two days later a new bill was proposed, using Jefferson's method with a divisor of 33000 and a house size of 105.

The Senate voted for it on the same day, and Washington signed the bill into law on April 14, 1792.

Jefferson had triumphed.
His method was used until the 1830 .

Jefferson had triumphed.
His method was used until the 1830 s.
Until some states noticed something fishy...

Jefferson's method favors large states.

Large State Bias of Jefferson's Method

We want to distribute 100 seats among a population of $10,000,000$. Thus, ideally, around 100,000 people per representative.

				$d=100,000$
state	population	population/d	seats	repr. ratio
New York	$2,620,000$	26.2	26	100769.23
Delaware	168,000	1.68	1	168000
\ldots	\ldots	\ldots	\ldots	\ldots
US (total)	$10,000,000$	100	99	101010.101

Large State Bias of Jefferson's Method

We want to distribute 100 seats among a population of $10,000,000$. Thus, ideally, around 100,000 people per representative.

But the divisor $d=100,000$ does not deliver enough seats.

				$d=100,000$
state	population	population/d	seats	repr. ratio
New York	$2,620,000$	26.2	26	100769.23
Delaware	168,000	1.68	1	168000
\ldots	\ldots	\ldots	\ldots	\ldots
US (total)	$10,000,000$	100	99	101010.101

Large State Bias of Jefferson's Method

We want to distribute 100 seats among a population of $10,000,000$. Thus, ideally, around 100,000 people per representative.

But the divisor $d=100,000$ does not deliver enough seats.

Decreasing the divisor to $d^{\prime}=97,000$ does the trick, but the additional seat goes to the larger state (New York).

Larger states arrive 'earlier' at the additional seat.

state	population	population/d	seats	$d=100,000$ repr. ratio
New York	$2,620,000$	26.2	26	100769.23
Delaware	168,000	1.68	1	168000
\ldots	\ldots	\ldots	\ldots	\ldots
US (total)	$10,000,000$	100	99	101010.101
				$d^{\prime}=97,000$
state	population	population/d'	seats	repr. ratio
New York	$2,620,000$	27.01	27	97037.04
Delaware	168,000	1.732	1	168000
\ldots	\ldots	\ldots	\ldots	\ldots
US (total)	$10,000,000$	103.093	100	100000

Jefferson's method

 disenfranchises voters in the left out fractions of small states.Enter Lowndes.

William Jones Lowndes 1782-1822

Congressman from South Carolina.
Involved in negotiations around the Missouri compromise.

Proposed a new apportionment method.

Calculate the standard quota of each seat and round down, like woith Hamilton's method.

Divide the quotas by the initial number of seats given.
Assign remaining seats in order of this new quantity.

Lowndes' Method

Every state gets its lower standard quota

There are 13 out of the desired 213 seats left to be allocated.

state	population		standard quota
initial seats			
Pennsylvania	$1,049,313$	24.917	24
Illinois	54,843	1.302	1
\ldots	\ldots	\ldots	\ldots
Total			200

Lowndes' Method

Every state gets its lower standard quota
There are 13 out of the desired 213
seats left to be allocated.

Order states by priority number, calculated as their standard quota divided by the number of inisial seats
Note that Illinois has a higher priority

state	population		standard quota	initial seats
st q/i seats				
Pennsylvania	$1,049,313$	24.917	24	1.04
Illinois	54,843	1.302	1	1.30
\ldots	\ldots	\ldots	\ldots	\ldots
Total			200	

Lowndes' Method

Every state gets its lower standard quota

There are 13 out of the desired 213 seats left to be allocated.

Order states by priority number, calculated as their standard quota divided by the number of inisial seats
Note that Illinois has a higher priority

state	population standard quota	initial seats	st q/is seats	final seats	
Pennsylvania	$1,049,313$	24.917	24	1.04	24
Illinois	54,843	1.302	1	1.30	2
$\ldots .$.	\ldots	\ldots	\ldots	\ldots	\ldots
Total			200		213

Allocate the remaining seats

Unlike with Hamilton's method, Illinois gets an extra seat before Pennsylvania.

In 1820, Lowndes' method would have given all the extra seats to the smallest states.

It was promptly rejected by Congress.

Enter Adams.

John Adams
 1735-1826

Founding father, and second president of the US.

While president, he waged an unofficial naval war with France.

According to Benjamin Franklin, "He means well for his country, is always an honest man, often a wise one, but sometimes, and in some things, absolutely out of his senses."

Find a divisor d such that:

$$
\begin{aligned}
& \left\lceil\frac{p_{1}}{d}\right\rceil+\ldots+\left\lceil\frac{p_{n}}{d}\right\rceil=k \\
& \text { State i gets }\left\lceil p_{i} / d\right\rceil \text { seats. }
\end{aligned}
$$

Unsurprisingly, Adams' method favors small

 states.
Small State Bias of Adams' Method

We want to distribute 100 seats among a population of $10,000,000$. This means around 100,000 people per representative.

state	population	population/d	seats	$d=100,000$
repr. ratio				

The divisor $d=100,000$ does not deliver enough seats.

Here we need to increase the divisor to $d^{\prime}=104,000$ to get the desired number of seats.

But now the small states get an advantage.

				$d^{\prime}=104,000$
state	population	population/d'	seats	repr. ratio
New York	$2,668,000$	25.654	26	102615.38
Delaware	120,000	1.154	2	60000
\ldots	\ldots	\ldots	\ldots	\ldots
US (total)	$10,000,000$	96.154	100	100000

Adams' method was considered by Congress, but never enacted.

Adams' method was considered by Congress, but never enacted.

The larger states, having the upper hand, would have none of it.

I bung my barp upon my voillows, and gave up.

Enter Webster.

Daniel Webster 1782-1852

Lawyer, congressman, and US secretary of state under three presidents.

Famous for his oratory.
His speeches were reported to move even the most stone-hearted to tears.

Find a divisor d such that:

$$
\left[\frac{p_{1}}{d}\right]+\ldots+\left[\frac{p_{n}}{d}\right]=k
$$

$$
\text { State i gets }\left[p_{i} / d\right] \text { seats. }
$$

Webster's Method Is Impartial

We want to distribute 33 seats among a population of 330,000 . This means 10,000 people per representative.

The divisor $d=10,000$, together with Webster's method, delivers the right number of seats.

Rounding to the nearest integer sometimes favors the smaller state, sometimes the larger state.

state	population	population/d	seats	repr. ratio
Colorado	304,000	30.4	30	10133.33
Nebraska	26,000	2.6	3	8666.67
US (total)	330,000	33	33	10000

			$d=10,000$	
state	population	population/d	seats	repr. ratio
Oregon	296,000	29.6	30	9866.67
Arkansas	34,000	3.4	3	11333.33
US (total)	330,000	33	33	10000

Webster's method was adopted in 1842 .

Webster's method was adopted in 1842 .

Not ten years passed until it was challenged.

Enter Vinton.

Samuel Finley Vinton 1792-1862

Member of the House of Representatives, hailing from Ohio.

Helped create the US Department of the Interior.

SAMUEL F. VINTON Fix the number k of seats to be allocated.

Start by giving each state its lower standard quota.
If there are seats that remain to be allocated, look at the residue of each state:

$$
r_{i}=q_{i}-\left\lfloor q_{i}\right\rfloor
$$

Distribute the remaining seats (one each) to the states with the largest residues.

Vinton's method was, of course, identical to the method proposed by Hamilton and which had been vetoed by Washington in 1792.

Vinton's method was, of course, identical to the method proposed by Hamilton and which had been vetoed by Washington in 1792.

Congress adopted it in 1850.

Meanwhile, the population of the US keeps growing, with the House struggling to keep up.

Total state population

After the 1880 census, the House was expected to grow again.

After the 1880 census, the House was expected to grow again.

But when the seats were computed, something extraordinary happened...

The Alabama Paradox

We start with $k=299$ seats, to be distributed among a population of $\sim 50 \mathrm{mil}$.

With the (standard) divisor $d=165,120$, the Hamilton-Vinton method gives Alabama 8 seats.

		$d=165,120$	
state	population	population/d	seats
Alabama	$1,262,505$	7.646	8
Texas	$1,591,749$	9.64	9
Illinois	$3,077,871$	18.64	18
\ldots	\ldots	\ldots	\ldots
US (total)	$49,713,370$	301.074	299

The Alabama Paradox

state	population	population/d	seats
Alabama	$1,262,505$	7.646	8
Texas	$1,591,749$	9.64	9
Illinois	$3,077,871$	18.64	18

With the (standard) divisor $d=165,120$, the Hamilton-Vinton method gives Alabama 8 seats.

$$
\text { US (total) 49,713,370 } 301.074 \quad 299
$$

$d^{\prime}=164,580$
Increasing the House size to $k+1=300$ (and recalculating the divisor to $d^{\prime}=164,580$) results in Alabama losing a seat!

state	population	population/d'	seats
Alabama	$1,262,505$	7.671	7
Texas	$1,591,749$	9.672	10
Illinois	$3,077,871$	18.701	19

US (total) 49,713,370 302.062 300

Members of Congress were outraged.

Members of Congress were outraged.

The compromise solution was to enlarge the House to 325 seats, on which Webster's and Hamilton's methods agreed.

Soon enough, another problem emerged.

The Population Paradox

d~193,164

In 1900 the size of the house had risen to $k=386$ seats, to be distributed among a population of $\sim 74.5 \mathrm{mil}$.

state	population	population/d	seats
Virginia	$1,854,184$	9.599	10
Maine	694,466	3.595	3
$\ldots .$.	\ldots	\ldots	\ldots
US (total)	$74,562,608$	386.006	386

The Hamilton-Vinton method gives Virginia 8 seats.

The Population Paradox

d~193,164

In 1900 the size of the house had risen to $k=386$ seats, to be distributed among a population of $\sim 74.5 \mathrm{mil}$.

		$d \sim 193,164$	
state	population	population/d	seats
Virginia	$1,854,184$	9.599	10
Maine	694,466	3.595	3
\ldots	\ldots	\ldots	\ldots
US (total)	$74,562,608$	386.006	386

The Hamilton-Vinton method gives Virginia 8 seats.

A year later, Virginia's population grew by 1.06\%, while Maine's grew by 0.7%.

But the extra seat goes to Maine!

state	population	population/d	seats
Virginia	$1,873,951$	9.509	9
Maine	699,114	3.548	4
$\ldots .$.	\ldots	\ldots	\ldots
US (total)	$76,069,522$	386	386

And another problem.

The New State Paradox

In 1907, Oklahoma joined the union.
At around 1 million people, Oklahoma deserved five seats in the House.

Congress then added five seats, and used Hamilton's method to recalculate the apportionment.

state	population	population/d	seats
New York	$7,264,183$	37.606	38
Maine	694,466	3.595	3
Oklahoma	-	-	-
Total $74,562,608$	386.004	386	

The New State Paradox

In 1907, Oklahoma joined the union.
At around 1 million people, Oklahoma deserved five seats in the House.

Congress then added five seats, and used Hamilton's method to recalculate the apportionment.

All extra seats went to Oklahoma.
But New York lost a seat to Maine!

state	population	population/d	seats
New York	$7,264,183$	37.606	38
Maine	694,466	3.595	3
Oklahoma	-	-	-
Total	$74,562,608$	386.004	386
state	population	population/d	seats
New York	$7,264,183$	37.606	37
Maine	694,466	3.595	4
Oklahoma	$1,000,000$	5.175	5
Total	$75,562,608$	391.181	391

In response to these paradoxes Congress switched back to Webster's method.

In response to these paradoxes Congress switched back to Webster's method.

Webster's method is more impartial, but Hamilton's method was preferred by the large states.

Enter Willcox.

Walter Francis Willcox
 1861-1964

Statistician at Cornell University.
Served as one of five chief statisticians for the US Census of 1900.

WALTER F. WILLCOX
After studying all the various apportionment methods, I am convinced Webster's method is best.

Congress started leaning towards the Webster-Willcox method.

Congress started leaning towards the Webster-Willcox method.

But Ohio and Mississippi, which would have gotten an extra seat under Hamilton's method, protested.

To keep everyone happy, in 1921

 Congress kept Webster's method and increased the size of the House to 435.To keep everyone happy, in 1921 Congress kept Webster's method and increased the size of the House to 435.

This number is still in place today.

To keep everyone happy, in 1921
Congress kept Webster's method and increased the size of the House to 435.

This number is still in place today.
But new ideas were needed.

Enter Hill.

Joseph Adna Hill
 1860-1938

Statistician.
One of the authors of the Method of Equal
Proportions, used to apportion representatives to states.

We should look at the number of people needed to get one representative.

What we called the representation ratio.
It doesn't seem fair to give state a representative per 50,000 people, and another state gets one per 70,000 people.

We should seek to minimize the relative difference between these quantities.

Minimizing Relative Differences

There are 20 seats for a population of 4 million, amounting, ideally, to $d=200,000$ per seat.

The 20 seats are to be distributed among states 1 and 2 , with populations $3,300,000$ and 700,000 , respectively.

Minimizing Relative Differences

There are 20 seats for a population of 4 million, amounting, ideally, to $d=200,000$ per seat.

The 20 seats are to be distributed among states 1 and 2 , with populations $3,300,000$ and 700,000, respectively.

An allocation of 16 and 4 seats leads to a relative difference (i.e., ratio) of 1.18.

state	population	population/d	seats	repr. ratio
1	$3,300,000$	16.5	16	$206,250.00$
2	700,000	3.5	4	$175,000.00$
Total	$4,000,000$	20	20	$200,000.00$

Minimizing Relative Differences

There are 20 seats for a population of 4 million, amounting, ideally, to $d=200,000$ per seat.

The 20 seats are to be distributed among states 1 and 2 , with populations $3,300,000$ and 700,000 , respectively.

An allocation of 16 and 4 seats leads to a relative difference (i.e., ratio) of 1.18.

An allocation of 17 and 3 seats leads to a relative difference of 1.20 .

state	population	population/d	seats	repr. ratio
1	$3,300,000$	16.5	16	$206,250.00$
2	700,000	3.5	4	$175,000.00$
Total	$4,000,000$	20	20	$200,000.00$

state	population	population/d	seats	$d=200,000$ repr. ratio
1	$3,300,000$	16.5	17	$194,117.65$
2	700,000	3.5	3	$233,333.33$
Total	$4,000,000$	20	20	$200,000.00$

Minimizing Relative Differences

There are 20 seats for a population of 4 million, amounting, ideally, to $d=200,000$ per seat.

The 20 seats are to be distributed among states 1 and 2 , with populations $3,300,000$ and 700,000 , respectively.

An allocation of 16 and 4 seats leads to a relative difference (i.e., ratio) of 1.18.

An allocation of 17 and 3 seats leads to a relative difference of 1.20 .

The first allocation is more equal ($1.18<1.20$), and therefore preferred.

state	population	population/d	seats	repr. ratio
1	$3,300,000$	16.5	16	$206,250.00$
2	700,000	3.5	4	$175,000.00$
Total	$4,000,000$	20	20	$200,000.00$

state	population	population/d	seats	$d=200,000$ repr. ratio
1	$3,300,000$	16.5	17	$194,117.65$
2	700,000	3.5	3	$233,333.33$
Total	$4,000,000$	20	20	$200,000.00$

In general, we look for an apportionment where there's no possible reallocation
from one state to another that reduces disparity.

In general, we look for an apportionment where there's no possible reallocation from one state to another that reduces disparity.

This involves reasoning over all pairs of states, and multiple divisors.

This requires a lot of

 computation.Enter Huntington.

Edward Vermilye Huntington 1874-1952

Mathematician.

Big fan of Hill's Method of Equal Proportions, which would go on to be known as the Huntington-Hill method.

EDWARD V. HUNTINGTON
There's a simpler way of thinking about Hill's procedure.

EDWARD V. HUNTINGTON
There's a simpler way of thinking about Hill's procedure.

Consider first the following rounding function:

$$
f(x)=\left\{\begin{array}{l}
\lfloor x\rfloor, \text { if } x<\sqrt{\lfloor x\rfloor \cdot\lceil x\rceil}, \\
\lceil x\rceil, \text { if } x \geq \sqrt{\lfloor x\rfloor \cdot\lceil x\rceil} .
\end{array}\right.
$$

That is, we are rounding at the geometrical mean.

EDWARD V. HUNTINGTON
There's a simpler way of thinking about Hill's procedure.

Consider first the following rounding function:

$$
f(x)=\left\{\begin{array}{l}
\lfloor x\rfloor, \text { if } x<\sqrt{\lfloor x\rfloor \cdot\lceil x\rceil}, \\
\lceil x\rceil, \text { if } x \geq \sqrt{\lfloor x\rfloor \cdot\lceil x\rceil} .
\end{array}\right.
$$

That is, we are rounding at the geometrical mean.
Now fix a number k of seats.
Find a divisor d such that:

$$
f\left(\frac{p_{1}}{d}\right)+\cdots+f\left(\frac{p_{n}}{d}\right)=k .
$$

State i gets $f\left(p_{i} / d\right)$ seats.

More generally, we can think of f as a rounding function that satisfies:
(i) $f(x)=x$, if x is an integer,
(ii) if $x \geq y$, then $f(x) \geq f(y)$.

More generally, we can think of f as a rounding function that satisfies:
(i) $f(x)=x$, if x is an integer,
(ii) if $x \geq y$, then $f(x) \geq f(y)$.

We get a different apportionment method for every different rounding function.

More generally, we can think of f as a rounding function that satisfies:
(i) $f(x)=x$, if x is an integer,
(ii) if $x \geq y$, then $f(x) \geq f(y)$.

We get a different apportionment method for every different rounding function.

Giving us the family of divisor methods.

THEOREM (HUNTINGTON, 1928)

A divisor method is the Huntington-Hill method if and only if for all states $i, j \in N$ such that $p_{i} / k_{i} \geq p_{j} / k_{j}$, it holds that:

state	population	population/d	seats	repr. ratio
1	3,300,000	16.5	16	206,250.00
2	700,000	3.5	4	175,000.00
Total	4,000,000	20	20	200,000.00

$$
\frac{p_{i} / k_{i}}{p_{j} / k_{j}}<\frac{p_{j} /\left(k_{j}-1\right)}{p_{i} /\left(k_{i}+1\right)}
$$

state	population	population/d	seats	$\begin{gathered} d=200,000 \\ \text { repr. ratio } \end{gathered}$
1	3,300,000	16.5	17	194,117.65
2	700,000	3.5	3	233,333.33
Total	4,000,000	20	20	00,000.00

$\left.\begin{array}{rcccc}\text { state } & \text { population } & \text { population/d } & \text { seats } & \begin{array}{c}d=200,000 \\ \text { repr. ratio }\end{array} \\ \hline i & p_{i} & & k_{i} & p_{i} / k_{i} \\ j & p_{j} & & k_{j} & p_{j} / k_{j}\end{array}\right\} \stackrel{\rightharpoonup}{\overrightarrow{\vec{\omega}}}$

$$
\frac{p_{i} / k_{i}}{p_{j} / k_{j}}<\frac{p_{j} /\left(k_{j}-1\right)}{p_{i} /\left(k_{i}+1\right)} .
$$

state	population	population/d	seats	$\begin{gathered} d=200,000 \\ \text { repr. ratio } \end{gathered}$
i	p_{i}		$k_{i}+1$	$p_{i} /\left(k_{i}+1\right)$
j	p_{j}		$k_{j}-1$	$p_{j} /\left(k_{j}-1\right)$
otal	00,000	20	20	0,000.00

A bitter squabble ensued in 1920.

A bitter squabble ensued in 1920.

The Huntington-Hill method would have assigned an extra seat to Vermont, New Mexico and Rhode Island.

A bitter squabble ensued in 1920.
The Huntington-Hill method would have assigned an extra seat to Vermont, New Mexico and Rhode Island.

The larger states of New York, North Carolina and Virginia, who stood to lose one state, objected.

Deadlock resulted.

Deadlock resulted.

In 1921 Congress decided not to re-apportion the seats.

Deadlock resulted.

In 1921 Congress decided not to re-apportion the seats.

In direct violation to the Constitution (!).

WALTER F. WILLCOX
Mathematicians and statisticians are in favor of my method.

Mathematicians and statisticians are in favor of my method.

EDWARD V. HUNTINGTON
Willcox's false description, supported by impressive charts and diagrams, is misleading.

Our method of equal proportions, with its simplicity, directness and intelligibility, leaves nothing to be desired.

After much acrimonious debate, both in Congress and scientific journals, the Huntington-Hill method prevailed.

After much acrimonious debate, both in Congress and scientific journals, the Huntington-Hill method prevailed.

And stays on as the method used.

After much acrimonious debate, both in Congress and scientific journals, the Huntington-Hill method prevailed.

And stays on as the method used.
For now...

Read more here.

Postscript.

Many of these apportionment methods

 were reinvented in Europe, and are used to this day to determine the constituency of Parliaments.Many of these apportionment methods were reinvented in Europe, and are used to this day to determine the constituency of Parliaments.

In 1983, Balinski and Young showed that any reasonable apportionment rule is vulnerable to paradoxes.

