TWEAKING DEMOCRACY: INNOVATIONS IN DEMOCRATIC DECISION MAKING

VOTING THEORY

Adrian Haret

a.haretalmu.de

Voting is about aggregating information across a group.
When the goal is to take a decision that concerns the entire group.
And often involves finding a compromise between conflicting preferences.

Voting is about aggregating information across a group.
When the goal is to take a decision that concerns the entire group.
And often involves finding a compromise between conflicting preferences.
The stakes can be very high! Like determining who made the better Queen...

People seem to be very fond of ranking things, though their opinions and wants can differ significantly.

OLIVIA COLMAN
Nonetheless, for giving out awards, or recommendations, we may want to combine their rankings into a single outcome.
imelda staunton
The outcome could range in terms of structure, from another ranking, to a single winner, or a set of winners.

472	380	96	19	29	9
Foy	Foy	Colman	Colman	Staunton	Staunton
Colman	Staunton	Foy	Staunton	Foy	Colman
Staunton	Colman	Staunton	Foy	Colman	Foy

Foy, Colman, Staunton? \{Foy, Colman\}? Foy?

And is thus important in a democratic society.

tim roughgarden

But is also important in many applications of AI and Computer Science.

Rank Aggregation.
Crowdsourcing.
Participatory budgeting.

A Potpourri of Voting Rules

$$
\begin{aligned}
\text { agents, or voters } & N=\{1, \ldots, n\} \\
\text { alternatives, or candidates } & A=\{a, b, c, \ldots\},|A|=m \\
\text { preference order of voteqr } & \succ_{i} \text {, linear order on alternatives } \\
\text { set of all possible preferences } & L=\{\succ \mid \succ \text { is a linear order on } A\} \\
\text { preference profile } & \left(\succ_{1}, \ldots, \succ_{n}\right) \in L^{n} \\
\text { social choice function } & F: L^{n} \rightarrow 2^{A} \backslash\{\emptyset\} \\
\text { resolute social choice function } & F: L^{n} \rightarrow A \\
\text { social welfare function } & F: L^{n} \rightarrow L
\end{aligned}
$$

Many voting rules can sometimes result in ties.

If we need to avoid this we can use some tie-breaking rule, or, sometimes, assume that the number of voters is odd.

DEFINITION (MAJORITY)
Every agent reports their top choice. The winners are the alternatives that get at least half of the votes.

55	45	
a	b	LATEST
NEWS		

Used

... whenever a group needs to choose between a and b.
$a \quad b$
$b \quad a$

Pros
... simple, intuitive.

Cons

	55	45
	a	b
Used	a whenever a group needs to choose between	
a and b.	b	a

Pros
... simple, intuitive.

Cons

... doesn't always deliver an answer for more than two alternatives.

DEFINITION (PLURALITY*)
Every agent reports their top choice. The winners are the alternatives that get the most votes.

Plurality winners

Used

... to elect representatives (e.g., members of parliament, mayors) in the UK, the US, Canada, India.
... all in all, for local and national elections in 43 of the 193 countries of the United Nations.

Pros

... simple, works for any number of alternatives.

Cons

Used

... to elect representatives (e.g., members of parliament, mayors) in the UK, the US, Canada, India.
... all in all, for local and national elections in 43 of the 193 countries of the United Nations.

Pros

... simple, works for any number of alternatives.

Cons

... may produce very bad results.

c

a

a is hated by two thirds of the electorate!

Used

... to elect representatives (e.g., members of parliament, mayors) in the UK, the US, Canada, India.
... all in all, for local and national elections in 43 of the 193 countries of the United Nations.

Pros

... simple, works for any number of alternatives.

Cons

... may produce very bad results.
b and c split the vote against a

c

a is hated by two thirds of the electorate!

Used

... to elect representatives (e.g., members of parliament, mayors) in the UK, the US, Canada, India.
... all in all, for local and national elections in 43 of the 193 countries of the United Nations.

Pros

... simple, works for any number of alternatives.

Cons
... may produce very bad results.
... and encourages tactical voting.

A similar thing happens if the population is divided into districts. Suppose a, b and c are parties and each district gets a seat on the city council.

THIS
JUST IN
With plurality party a gets all five seats, despite being ranked last by 60% of the voters!

In the long run, c loses support as more and more voters migrate towards b.

In general, smaller parties get squeezed out of power.

Because no one bothers to vote for them.

Because they don't win anyway.
A single-ballot plurality-rule election structured within single-member districts tends to favor a two party system.

This is known nowadays as Duverger's Law.

\qquad g. YouTube.

DEFINITION (PLURALITY WITH RUNOFF)
Every agent reports their top choice. If there is a candidate that gets a majority of the votes, they are declared the winner. If not, hold an extra round of voting between the two candidates that get the most votes. The majority winner at this round is declared the winner.

Used

. to elect presidents in France, Romania, etc.

Pros

... reduces need for tactical voting.
$b a \quad a$

40	35	25
a	b	c
c	c	b
b	a	a

Used

. to elect presidents in France, Romania, etc.

Pros

> ... reduces need for tactical voting.

Cons
... though does not eliminate it: sometimes have to lie to make sure a preferred alternative makes it to the second round.
... and may still produce very bad results.

$b \quad a \quad a$

Turns out plurality, a super-popular voting rule, is not very good.
It allows for alternatives to get elected even when there is some other alternative that a majority thinks is better.

And having a runoff does not fix the problem.

Winners should be the alternatives that beat every other alternative in a head-to-head contest.

Kind of how we do our end-of-year mobile phone rankings.
See the 2022 smartphone awards video!

DEFINITION (THE CONDORCET RULE)
We write $n(x, y)$ for the number of agents who prefer alternative x to alternative y.
A Condorcet winner is an alternative x^{*} such that $n\left(x^{*}, y\right)>n\left(x^{*}, y\right)$, for any (other) alternative y.

4	3	3	3
a	b	c	d
b	c	d	c
c	d	b	b
d	a	a	a

4	3	3	3	$n(a, b)=4$
a	b	c	d	$n(b, a)=9$
b	c	d	c	
c	d	b	b	
d	a	a	a	

4	3	3	3	
a	b	c	d	$n(a, b)=4$ $n(b, a)=9$
b	c	d	c	
c	d	b	b	
d	a	a	a	

4	3	3	3
a	b	c	d
b	c	d	c
c	d	b	b
d	a	a	a

$n(a, b)=4$
$n(b, a)=9$

4	3	3	3
a	b	c	d
b	c	d	c
c	d	b	b
d	a	a	a

$$
\begin{aligned}
& n(a, b)=4 \\
& n(b, a)=9 \\
& n(b, c)=7 \\
& n(c, b)=6 \\
& n(b, d)=7 \\
& n(d, b)=6
\end{aligned}
$$

| 4 | 3 | 3 | 3 | $n(a, b)=4$
 $n(b, a)=9$
 $n(b, c)=7$
 $n(c, b)=6$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | c | d | Condorcetwinner |
| b | c | d | c | b |
| c | d | b | b | n
 $n(b, d)=7$
 $n(d, b)=6$ |
| d | a | a | a | |

	4	3	3	3		
					$n(a, b)=4$	
	a	b	c	d	$n(b, a)=9$	Condoret win
Used	b	c	d	c	$n(b, c)=7$	b
... in this form, nowhere (will see in a moment						
why).	c	d	b	b	$\begin{aligned} & n(b, d)=7 \\ & n(d, b)=6 \end{aligned}$)
	d	a	a			

Pros

... makes sense.

Used

... in this form, nowhere (will see in a moment why).

$a \quad b \quad c \quad d$

 $b \quad c \quad d \quad c$$$
\begin{aligned}
& n(a, b)=4 \\
& n(b, a)=9 \\
& n(b, c)=7 \\
& n(c, b)=6 \\
& n(b, d)=7 \\
& n(d, b)=6
\end{aligned}
$$

Pros

... makes sense.

Cons

DEFINITION (CONDORCET CONSISTENT RULES)
A voting rule is Condorcet consistent if it selects the Condorcet winner, when it exists.

The Condorcet method needs to be tweaked to make sure it returns an answer when a Condorcet winner does not exist.

As such, Condorcet consistent rules are used in practice.

The Wikimedia Foundation used the Schulze method to elect its Board of Trustees until 2013.

The Pirate Party of Sweden uses the Schulze method for its primaries.

The Debian project uses the Schulze method for internal referendums and to elect its leader.

Black
Copeland
Bodgson
Kemeny
Minimax
Nanson
Ranked pairs
Schulze

Note that for smartphones, ain't nobody got time to rank all possible pairs of phones.

MARQUES, AKA MKBHD
Note that for smartphones, ain't nobody got time to rank all possible pairs of phones.
So what we implement is a restricted set of comparisons, where winners from one pair go on to be pitted against winners from a different pair, and so on.

MARQUES, AKA MKBHD
Note that for smartphones, ain't nobody got time to rank all possible pairs of phones.
So what we implement is a restricted set of comparisons, where winners from one pair go on to be pitted against winners from a different pair, and so on.

Also called a tournament.

MARQUES, AKA MKBHD
Note that for smartphones, ain't nobody got time to rank all possible pairs of phones.
So what we implement is a restricted set of comparisons, where winners from one pair go on to be pitted against winners from a different pair, and so on.

Also called a tournament.
Yes, like in sports.

Looking at head-to-head contests does not always result in a meaningful ranking.

> As there can be majority cycles.

One suggestion is that we're not using all the information available in the profile.

I have an idea!

DEFINITION (THE BORDA RULE)

Every voter i gives to alternative x a score of $m-\operatorname{pos}_{i}(x)$, called the Borda score, where $\operatorname{pos}_{i}(x) \in\{1, \ldots, m\}$ is the position of x in i 's preference order \succ_{i}.

The Borda winners are the alternatives with the highest overall score, i.e., that maximize the sum of the Borda scores over all voters.

Used		4	3	3	3	Borda score	
	... in the National Assembly of Slovenia, Icelandic parliamentary elections.	a	b	c	d		
						a.	Borda winer
		b	c	d	c	b:23	C
						c: 25	
		c	d	b	b	d: 18	
Pros		d	a	a	a		
	... Borda winners always exist.						

Used

Pros
... Borda winners always exist.

Cons
... sensitive to the introduction/removal of
... sensitive to the introduction/removal of
irrelevant alternatives.
 .. in the National Assembly of Slovenia, Icelandic parliamentary elections.
$c \quad b \quad b$

Borda scores
$a: 12$
b: 23
c: 25
$d: 18$
Borda winner

Borda winner

Used

Pros
... Borda winners always exist.

Cons
... sensitive to the introduction/removal of irrelevant alternatives.
 .. in the National Assembly of Slovenia, Icelandic parliamentary elections.
b
$c \quad d \quad b \quad b$

Borda scores
$a: 12$
b: 23
c: 25
$d: 18$
new Borda winner

a
Candidate c, who has no
chance of winning, ${ }^{\text {spoiler for } b}$

Used

Pros
... Borda winners always exist.
Cons
$\quad .$. sensitive to the introduction/removal of
irrelevant alternatives.
Cons
... sensitive to the introduction/removal of
irrelevant alternatives.
Cons
... sensitive to the introduction/removal of
irrelevant alternatives.
... can be manipulated by strategic agents.
.. in the National Assembly of Slovenia, Icelandic parliamentary elections.

1	1	1

$c \quad c \quad c$
d d d

Borda scores
$a: 12$
b: 23
c: 25
$d: 18$

	4	3	3	3
	4			

> ... in the National Assembly of Slovenia, Icelandic parliamentary elections.

Pros
... sensitive to the introduction/removal of irrelevant alternatives.
... can be manipulated by strategic agents.

$b \quad c \quad d \quad c$
$c \quad d \quad b \quad b$
$d a \quad a \quad a$
... Borda winners always exist.

Cons

b
a c
a
a

Borda scores
$a: 12$
b: 23
c: 25
$d: 18$
Borda winner
C
$\because=\square$

My rule is intended for honest people!

The Borda rule is one instance of a broader class of rules: scoring rules.

DEFINITION (SCORING RULE)
A scoring rule uses a scoring vector $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$, with $s_{1} \geq \ldots \geq s_{n}$ and $s_{1}>s_{n}$, to assign score S_{j} to candidate in position j of voter i 's ranking.

For every alternative, we add up the score across all voters.

The winners are the alternatives with the highest overall score.

For the Borda rule the scores are:

$$
s=(m-1, m-2, \ldots, 0)
$$

For plurality:

$$
s=(1,0, \ldots, 0)
$$

RUSS KUN, PRESIDENT OF NAURU
In Nauru we use the Dowdall scoring vector:

$$
s=\left(1, \frac{1}{2}, \ldots, \frac{1}{m}\right)
$$

ME
And then, of course:

$$
s=(12,10,8,7,6,5,4,3,2,1)
$$

For the Borda rule the scores are:

$$
s=(m-1, m-2, \ldots, 0)
$$

For plurality:

$$
s=(1,0, \ldots, 0)
$$

RUSS KUN, PRESIDENT OF NAURU In Nauru we use the Dowdall scoring vector:

$$
s=\left(1, \frac{1}{2}, \ldots, \frac{1}{m}\right)
$$

ME
And then, of course:

$$
s=(12,10,8,7,6,5,4,3,2,1)
$$

DEFINITION (SINGLE TRANSFERABLE VOTE, OR STV*)
The rule proceeds in rounds. At every round, the alternative that shows up on top least often is eliminated (if several, use a tie-breaking rule).

The STV winner is the last alternative left standing.

round o			
4	3	3	3
a	b	c	d
b	c	d	c
c	d	b	b
d	a	a	a

round o				round 1			
4	3	3	3	4	3	3	3
a	b	c	d	a	b	c	d
b	c	d	c	b	c	d	c
c	d	b	b	c	d	b	b
d	a	a	a	d	a	a	a

Under STV, a vote for a minor party is not a wasted vote.

DAVID CAMERON
STV is undemocratic, obscure, unfair and crazy.

A new crazy, convoluted, confusing system.
In the August 2022 US House election it failed to elect the Condorcet winner!

Which, admittedly, wasn't me.

Gowers, T. (2011). Is AV better than FPTP? Gower's Weblog $\frac{2011 \text { United King dom Alternative Vote referendum. Wikipedia }}{(2011) \text {. } 10 \text { reasons the AV referendum was lost. The Guardian }}$

DEFINITION (APPROVAL VOTING)
Ballots are subsets of alternatives: the ones voters approve of.

Approval winners are alternatives that have the most approvals.

Approval winners

Used

... in municipal elections in Fargo, North Dakota and St Louis, Missouri.

Pros
... is not vulnerable to tactical voting.
... strikes a good balance between expressiveness and difficulty, prevents minor party candidates from being spoilers.

BORDA
We've seen a bunch of voting rules.
Majority, various versions of plurality, Borda, approval.

> WORDA
> We've seen a bunch of voting rules.

Majority, various versions of plurality, Borda, approval.
condorcet
Rules based on the Condorcet criterion!

> WORDA We've seen a bunch of voting rules. Majority, various versions of plurality, Borda, approval.

CONDORCET
Rules based on the Condorcet criterion!
There's also a lot more out there!
Like quadratic voting, score voting, threshold rules,
selection by lot, ...

Majority, various versions of plurality, Borda, approval.

CONDORCET
Rules based on the Condorcet criterion!
There's also a lot more out there!
Like quadratic voting, score voting, threshold rules,
selection by lot, ...
condorcet
And we've seen some problems that voting rules run into.
Disrespecting majorities, encouraging voters to misreport their preferences, sensitivity to irrelevant alternatives...
http://whale.imag.fr/polls/vote/fdce351e-ea96-408f-b1fa-1390806e9eb8

So, um... what voting rule should we use?

JEAN-FRANCOIS LASLIER
Experts have different opinions as to which is the best voting procedure.

But it seems like they agree that Plurality is the worst.

And, for the most part, think Approval is the best.
Admittedly, results were aggregated using Approval...

Table 13.2 Approval scores			
Voting rule		Approvals	Approving percentage
Approval voting	App	15	68.18
Alternative vote	Alt	10	45.45
Copeland	Cop	9	40.91
Kemeny	Kem	8	36.36
Two-round majority	2 R	6	27.27
Coombs	Coo	6	27.27
Simpson	Sim	5	22.73
Majority judgement	Bal	5	22.73
Borda	Bor	4	18.18
Black	Bla	3	13.64
Range voting	RV	2	9.09
Nanson	Nan	2	9.09
Leximin	Lex	1	4.54
Top-cycle	TC	1	4.54
Uncovered set	UC	1	4.54
Fishburn		0	0
Untrapped set		0	0
Plurality		0	0

Characterizations and Impossibilities

So many voting rules: which one is the best?
We need some general principles to distinguish between voting rules.

Let's take the point of view of someone who wants to design a voting rule from scratch, and think about what properties, or axioms, we'd want the voting rule to satisfy.

$$
\begin{aligned}
\text { agents, or voters } & N=\{1, \ldots, n\} \\
\text { alternatives, or candidates } & A=\{a, b, c, \ldots\},|A|=m \\
\text { preference order of votigr } & \succ_{i} \text {, linear order on alternatives } \\
\text { set of all possible preferences } & L=\{\succ \mid \succ \text { is a linear order on } A\} \\
\text { preference profile } & \boldsymbol{R}=\left(\succ_{1}, \ldots, \succ_{n}\right) \in L^{n} \\
\text { social choice function } & F: L^{n} \rightarrow 2^{A} \backslash\{\emptyset\} \\
\text { resolute social choice function } & F: L^{n} \rightarrow A \\
\text { social welfare function } & F: L^{n} \rightarrow L
\end{aligned}
$$

The first axiom we look at is anonymity.

It says that the order in which we arrange the voters does not matter for the final result.

AXIOM (ANONYMITY)
A voting rule F satisfies Anonymity if, for any permutation σ of the set N of voters, it holds that:

$$
F\left(\succ_{1}, \ldots, \succ_{n}\right)=F\left(\succ_{\sigma(1)}, \ldots, \succ_{\sigma(n)}\right)
$$

Anonymity requires invariance under permutations of the voters in the profile.

The next property is neutrality.

It says that the names we give to alternatives do not matter. A rose by any other name...

AXIOM (NEUTRALITY)

A voting rule F satisfies Neutrality if, for any permutation σ of the set A of alternatives, it holds that:

$$
\sigma\left(F\left(\succ_{1}, \ldots, \succ_{n}\right)\right)=F\left(\sigma\left(\succ_{1}\right), \ldots, \sigma\left(\succ_{n}\right)\right)
$$

Every alternative is replaced with

Neutrality requires that permutations of the alternatives in the profile are reflected by permutations of the alternatives in the result.

And now for something a bit more involved: positive responsiveness.

It says, roughly, that increased support for some alternative has the power to break a tie in favor of that alternative.

AXIOM (POSITIVE RESPONSIVENESS)

A social choice function F satisfies Positive Responsiveness if, for any distinct profiles \boldsymbol{R} and \boldsymbol{R}^{\prime} and alternative x^{*}, we have that \boldsymbol{R} and \boldsymbol{R}^{\prime} are the same except that in \boldsymbol{R}^{\prime} some voters move x^{*} up some positions in their preference rankings, then it holds that if $x^{*} \in F(\boldsymbol{R})$, then $F\left(\boldsymbol{R}^{\prime}\right)=\left\{x^{*}\right\}$.

If in \boldsymbol{R}^{\prime} some voters raise x^{*}, while leaving everything else untouched, then x^{*} goes from being a (possibly tied) winner to the unique winner.

For two alternatives, it turns out that these properties are satisfied only by the majority voting rule.

THEOREM (MAY, 1952)
If there are only two alternatives, then the only social choice function that satisfies Anonymity, Neutrality and Positive Responsiveness is the majority rule.

And note that when there are only two alternatives, all the voting rules we've looked at so far are equivalent to the majority rule.

Now for more than two alternatives...

condorcet

We know that majority comparisons can get us into trouble with cycles.

And note that when there are only two alternatives, all the voting rules we've looked at so far are equivalent to the majority rule.

Now for more than two alternatives...

condorcet

We know that majority comparisons can get us into trouble with cycles.

But maybe there's some other clever way to combine preferences into a coherent social ranking.

For the next result we will focus on social welfare functions: voting rules that return a ranking of the alternatives.

Let's write down some more reasonable properties.

If everyone thinks some alternative is better than another, then this should be reflected in the result.

AXIOM (PARETO EFFICIENCY)

A social welfare function Fsatisfies Pareto Efficiency if, for any alternatives aad ,ityholds that if $x \succ_{i} y$, for every voter $i \in N$, then $x \succ_{F(\boldsymbol{R})} y$.
society's ranking

There is unanimous agreement that x is better than y.
$x \quad x$

Hence x is ranked above y in the aggregated ranking.
y

Society's ranking between two alternatives x and y should depend on how voters in the profile rank x and $y \ldots$ and nothing else.

AXIOM (INDEPENDENCE OF IRRELEVANT ALTERNATIVES, OR IIA)
A social welfare function F satisfies Independence of Irrelevant Alternatives (IIA) if, for any alternatives x and y and profiles $\boldsymbol{R}, \boldsymbol{R}^{\prime}$ such that for any agent $i \in N$ it holds that $x \succ_{i} y$ if and only if $x \succ_{i}^{\prime} y$, then it holds that $x \succ_{F(\boldsymbol{R})} y$ if and only if $x \succ_{F\left(\boldsymbol{R}^{\prime}\right)} y$.

If voters rank x and y in the same way across the two profiles, then the final ranking between x and y is the same for both profiles. . then

x	x
y	

y
y

Non-dictatorship is about making sure that there is no one voter who has final say, regardless of the preferences of the other voters.

DEFINITION (DICTATOR)

An agent $i \in N$ is a dictator for a social welfare function F if, for any alternatives x and y and profile \boldsymbol{R}, it holds that if $x \succ_{i} y$, then $x \succ_{F(\boldsymbol{R})} y$.

AXIOM (NON-DICTATORSHIP)

A social welfare function F satisfies Non-Dictatorship if no agent is a dictator.

A dictator decides the final ranking of every pair of alternatives, and thus the full final ranking.

These properties seem reasonable enough. But it turns out that, together, they spell trouble.

THEOREM (ARROW, 1951)
If there are at least three alternatives, then any social welfare function that satisfies Pareto Efficiency and Independence of Irrelevant Alternatives is a dictatorial.

THEOREM (ARROW, 1951)
If there are at least three alternatives, then any social welfare function that satisfies Pareto Efficiency and Independence of Irrelevant Alternatives is a dictatorial.

PROOF (SKETCH)

The main steps of the proof:

1. Extreme candidates end up in extreme positions.
2. For any alternative z there exists a voter k who is pivotal for z, i.e., can move z from the bottom of the aggregated ranking to the top, at some profile.
3. Pivotal voter k ends up being a dictator over any pair of alternatives x and y not involving z.
4. Voter k is a dictator over all pairs of alternatives.

WILLIAM H. RIKER Arrow's theorem shows that democracy, as government of the will of the people, is an incoherent illusion.

There is no 'will of the people'!

KENNETH ARROW
Certainly, it shows that certain intuitive, desirable properties are incompatible.

But then we have to lower our expectations.
It's all in the tradeoffs.

The Strategy of Voting

What better way to think of how voting can go awry than by looking at the decision practices of FIFA...

What voting rule is being used here?

| | ROUND1 | ROUND 2 | ROUND 3 | ROUND 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| QATAR | 11 | 10 | 11 | 14 |
| USA | 3 | 5 | 6 | 8 |
| SOUTH KOREA | 4 | 5 | 5 | |
| JAPAN | 3 | 2 | | |
| AUSTRALIA | 1 | | | |

What voting rule is being used here?

Some version of Instant-Runoff Voting, or STV.
Where voters submit a new vote at every round.

What is going on with the votes for Qatar between rounds 1 and 2 though?

	ROUND1	ROUND2	ROUND3	ROUND4
QATAR	11	10	11	14
USA	3	5	6	8
SOUTH KOREA	4	5	5	
JAPAN	3	2		
AUSTRALIA	1			

What voting rule is being used here?

Some version of Instant-Runoff Voting, or STV.

Where voters submit a new vote at every round.

What is going on with the votes for Qatar between rounds 1 and 2 though?

Perhaps one of the voters for Qatar, anticipating a tiebreak between the US and Japan in round 2, casts their vote for the US instead in order to ensure its survival to round 3 .

QATAR	11	10	11	14
USA	3	5	6	8
SOUTH KOREA	4	5	5	
JAPAN	3	2		
AUSTRALIA	1			

Similarly, it seems that one supporter of Japan suspects that Japan will be kicked out at round 2 and goes for their second-best?

ROUND1 ROUND 2 ROUND 3 ROUND 4

Either way, the changing tallies suggest tactical voting.

We've seen that many voting rules are afflicted by a common problem: they create incentives for voters to lie about their preferences.

Recall...

Under Plurality, voters don't want to support a losing candidate.

Under Borda, voters can manipulate by pushing alternatives they don't like down their list.

CHARLES DODGSON
Strategizing makes an election more of a game of skill than a real test of the wishes of the electors.

DEFINITION (STRATEGYPROOFNESS)
A resolute social choice function F is strategyproof if for all voters $i \in N$ it holds that there does not exist a profile \boldsymbol{R} and some order $>_{i}^{\prime}$ such that:

$$
F\left(>_{i}^{\prime}, \boldsymbol{R}_{-i}\right)>_{i} F(\boldsymbol{R}) .
$$

DEFINITION (STRATEGYPROOFNESS)
A resolute social choice function F is strategyproof if for all voters $i \in N$ it holds that there does not exist a profile \boldsymbol{R} and some order $>_{i}^{\prime}$ such that:

$$
F\left(>_{\partial}^{\prime}, \boldsymbol{R}_{i}\right) \gg_{i} F(\boldsymbol{R}) .
$$

Can we design strategyproof voting rules?

DEFINITION (DICTATORSHIP)
Choose an agent $i \in N$, called the dictator. The winner is the top choice of the dictator.

Recall that dictatorship is the only rule that satisfies Pareto Efficiency and Independence of Irrelevant Alternatives.

Recall that dictatorship is the only rule that satisfies Pareto Efficiency and Independence of Irrelevant Alternatives.

KIM JONG UN
I like this result.

Recall that dictatorship is the only rule that satisfies Pareto Efficiency and Independence of Irrelevant Alternatives.

KIM JONG UN
I like this result.

KENNETH ARROW

Recall that dictatorship is the only rule that satisfies Pareto Efficiency and Independence of Irrelevant Alternatives.

KIM JONG UN
I like this result.

THEOREM (GIBBARD-SATTERTHWAITE, 1973, 1975)
If a resolute social choice function F has at least three possible outcomes, then F is strategyproof if and only if it is a dictatorship.

Another way of escaping impossibility results is to assume the input, i.e., preference profiles, have some more specific structure.

DEFINITION (SINGLE-PEAKED PROFILES)
A profile is single-peaked if :

1. alternatives can be ordered linearly, e.g., from left to right, and
2. every voter has a most preferred alternative, and other alternatives are less preferred the further away they are to the ideal one.

$>_{1}$	$>_{2}$	$>_{3}$
b	c	a
a	d	b
$c c$	b	c
d	a	d

$>_{1}$	$>_{2}$	$>_{3}$
b	c	a
a	d	b
c	b	c
d	a	d

$>_{1}$	$>_{2}$	$>_{3}$
b	c	a
a	d	b
c	b	c
d	a	d

$>_{1}$	$>_{2}$	$>_{3}$
b	c	a
a	d	b
c	b	c
d	a	d

- voter 4

For an odd number of voters, if the profile is single-peaked then the median peak is a Condorcet winner and the Condorcet rule is strategyproof.

THEOREM (BLACK, 1948)

For an odd number of voters, if the profile is single-peaked then the median peak is a Condorcet winner and the Condorcet rule is strategyproof.

PROOF

If alternative x^{*} is the median peak, all voters whose peak is to the right of (or including) x^{*} rank x^{*} higher than alternatives to its left. And there is a strict majority of such voters. Similarly, voters whose peak is the left of (or including) rank x^{*} higherthan alternatives to its left. Thus, beats every bther alternative in a head-to-head contest, i.e., is a Condorcet winner.

THEOREM (BLACK, 1948)

For an odd number of voters, if the profile is single-peaked then the median peak is a Condorcet winner and the Condorcet rule is strategyproof.

PROOF

If alternative x^{*} is the median peak, all voters whose peak is to the right of (or including) x^{*} rank x^{*} higher than alternatives to its left. And there is a strict majority of such voters. Similarly, voters whose peak is the left of (or including) $x^{*} \operatorname{rank} x^{*}$ higher than alternatives to its left. Thus, x^{*} beats every other alternative in a head-to-head contest, i.e., is a Condorcet winner.

For strategyproofness, note that the median voter does not want to
 change their vote, and for every other voter a change of the result leads to a worse alternative being elected.

THEOREM

Approval voting is strategyproof.

THEOREM

Approval voting is strategyproof.

PROOF

If an alternative you approve of is the winner, then there is no gain from being insincere.

If the winner is an alternative you do not approve of, then there is no way of supporting your approved alternatives other than putting them on your ballot.

