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How did the Prisoner’s
Dilemma come about?
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Dilemma in the 50's, while working for the RAND

corporation.
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For all the confusion, mutual cooperation occurred 60 out of
the 100 trials.

MELVIN DRESHER



Poundstone, W. (1993). Prisoner’s Dilemma: John Von Neumann, Game Theory and the Puzzle of the Bomb. Anchor Books.



Are AA and JW irrational?



What do you say to that, John?!
MERRIL FLOOD

JOHN NASH



What do you say to that, John?!
MERRIL FLOOD

You know, playing the Prisoner’s Dilemma one time is not
the same as playing it 100 times.

JOHN NASH

Playing it over and over again is like playing a different,
multi-round game.

In the one-shot game there’s no room for things like loyalty,
trust, threats, or revenge.

But in the iterated version, these things can be relevant!



This gives us the first way out of the
pessimistic outlook of the Prisoner’s
Dilemma.



This gives us the first way out of the
pessimistic outlook of the Prisoner’s
Dilemma.

Does the equilibrium change if the game
is played repeatedly?



So far we’ve been assuming that players
make moves simultaneously, in
ignorance of the other players’ actions.



So far we’ve been assuming that players
make moves simultaneously, in
ignorance of the other players’ actions.

But, of course, some games are played
over rounds.



Games in extensive form



In perfect-information extensive-form games,
players take turns deploying their
actions.

And are aware of actions taken at
previous rounds: perfect memory!
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2

_ , _ _ , _

2

_ , _ _ , _

a a’

b b’ b’’ b’’’

Player 1 takes an action
...out of their action set: {a, a’}

Player 2 follows up
... knowing the action player 1 has taken

Every player receives a payoff
... specific to the branch taken

The whole game tree is known
... to all players

player 1 knows the

consequences of their

actions

player 2 knows the action

taken by player 1
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where non-terminal nodes (called choice nodes) correspond to players.



Extensive-form games with perfect information are modeled as trees,
where non-terminal nodes (called choice nodes) correspond to players.

At every one of its choice nodes, an agent has some actions available. 



Extensive-form games with perfect information are modeled as trees,
where non-terminal nodes (called choice nodes) correspond to players.

At every one of its choice nodes, an agent has some actions available. 

Each edge is labeled with the action taken by the parent agent at that
node.



Extensive-form games with perfect information are modeled as trees,
where non-terminal nodes (called choice nodes) correspond to players.

Terminal nodes are labeled with the utilities of the players for the
combination of actions that led to that particular outcome.

At every one of its choice nodes, an agent has some actions available. 

Each edge is labeled with the action taken by the parent agent at that
node.



Extensive-form games with perfect information are modeled as trees,
where non-terminal nodes (called choice nodes) correspond to players.

Terminal nodes are labeled with the utilities of the players for the
combination of actions that led to that particular outcome.

At every one of its choice nodes, an agent has some actions available. 

Each edge is labeled with the action taken by the parent agent at that
node.

A strategy for an agent is a combination of actions, one for each node
corresponding to that agent. 
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Pareto optimal strategy profiles

pure Nash equilibria
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The Ultimatum Game
Player 1 has two euros, which it has
to divide between themselves and
player 2.

Player 1 makes an offer, which player
2 can accept or reject.

If player 2 accepts, money is divided
according to player 1's offer.

If player 2 rejects, no one gets
anything.

1/2

mixed Nash equilibria

1

2

2, 0 0, 0

2

1, 1 0, 0

2

0, 2 0, 0

yes yesno yesno no

2-0 1-1 0-2



There are interesting cultural differences in the offers people
from different cultures accept and reject when playing The

Ultimatum Game.

JOE HENRICH

Henrich, J. (2020). The WEIRDest People in the World: How the West Became Psychologically Peculiar and Particularly Prosperous.
Farrar, Straus and Giroux.



1

2

2, 0 0, 0

2

1, 1 0, 0

2

0, 2 0, 0

yes yesno yesno no

2-0 1-1 0-2

Payoffs (aka utilities)

Players
N = {1, 2}

Strategies of player 1
{2-0, 1-1, 0-2}

(yes, yes, yes), (yes, yes, no), (yes, no, yes), (no, yes, yes),
(yes, no, no), (no, yes, no), (no, no, yes), (no, no, no)

Strategies of player 2

Strategy profiles
(2-0, (yes, yes, yes)), (2-0, (yes, yes, no)), ...

...



Note that there is a subtlety in the
definition of strategies.

The strategies of each player need to be
defined at every choice node of that
player. 

Even if there is no way to reach that node,
given the other choice nodes.



To reason our way through a perfect-
information game in extensive form,
we just turn it into a normal-form
game.



To reason our way through a perfect-
information game in extensive form,
we just turn it into a normal-form
game.

Yes, we can always do it.



yyy yyn yny ynn nyy nyn nny nnn

(2-0) 2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0

(1-1) 1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0

(0-2) 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0

1

2

2, 0 0, 0

2

1, 1 0, 0

2

0, 2 0, 0

yes yesno yesno no

2-0 1-1 0-2



Nash equilibria and everything else is
computed with respect to the
induced normal-form game.
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?
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The Ultimatum Game
Player 1 has two euros, which it has
to divide between themselves and
player 2.

Player 1 makes an offer, which player
2 can accept or reject.

If player 2 accepts, money is divided
according to player 1's offer.

If player 2 rejects, no one gets
anything.

1/2

mixed Nash equilibria

yyy yyn yny ynn nyy nyn nny nnn

(2-0) 2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0

(1-1) 1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0

(0-2) 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0 0, 2 0, 0

none

everything except (0, 0)

see above

too lazy to figure out



yyy yyn yny ynn nyy nyn nny nnn

(2-0) 2, 0 2, 0 2, 0 2, 0 0, 0 0, 0 0, 0 0, 0

(1-1) 1, 1 1, 1 0, 0 0, 0 1, 1 1, 1 0, 0 0, 0
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1
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2, 0 0, 0
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1, 1 0, 0

2

0, 2 0, 0

yes yesno yesno no

2-0 1-1 0-2

What makes (2-0, nnn) a Nash equilibrium
depends crucially on what Player 2 does at all
nodes: including ‘irrelevant’ ones.

Think: why does Player 1 not want to deviate?

Because Player 2 always says no, so there’s no
point!



Games in extensive form afford a
refinement of Nash equilibria:
subgame perfect equilibria.

These involve playing a Nash
equilibrium at every node of the
game.



A subgame perfect equilibrium can
be found by backward induction.



A subgame perfect equilibrium can
be found by backward induction.

We reason backwards, from the end
stages of a game, by finding the
optimal action at every intermediate
step.



1

2

3, 8 8, 3

2

5, 5
1

2, 10 1, 0

A B

C D E F

G H

Backward Induction: An Example
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surely chooses G, leading to a payoff of (2, 10). 
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own decision one step earlier, i.e., they know that
choosing F leads to a payoff of (2, 10). 
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2, 10 1, 0

A B

C D E F

G H

Faced with a choice only between G and H, player 1
surely chooses G, leading to a payoff of (2, 10). 

Player 2 takes that into account when making their
own decision one step earlier, i.e., they know that
choosing F leads to a payoff of (2, 10). 

We infer that player 2 chooses F here.

Which further means that player 1 sees a payoff of 2
if they go down this path.

On the other branch player 2 chooses C.

Which means player 1 chooses A.

After which we can just read off the subgame-
perfect equilibrium: ((A, G), (C, F)).

Backward Induction: An Example



Backward induction is well-defined
and terminates, if the game tree is
finite.

So what have we shown?



Every finite extensive-form game has at least one pure Nash Equilibrium.
THEOREM (ZERMELO, 1913)

Every finite extensive-form game has at least one subgame-perfect equilibrium.
THEOREM (SELTEN, 1965)

Zermelo, E. (1913). Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. Proceedings of the 5th International Congress of Mathematicians.

Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetraegheit. Zeitschrift fuer die Gesamte Staatswissenschaft, 121(2):301–324.



I arrived at these ideas while thinking about whether chess is
determined, i.e., whether either white or black has a winning

strategy, or can force a draw.

ERNST ZERMELO

Which is true if we can bound the length of a game.

At the same time, the game tree of chess is too large to actually
survey the strategies, let alone represent it explicitly.

alpha-beta pruning to disregard

parts of the tree 



With extensive-form games, we can go even a bit
more general.
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With extensive-form games, we can go even a bit
more general.

In perfect-information games players know what
actions were played at previous rounds.

And thus, what nodes they are in.

But in many other situations, players have only
partial knowledge.



Enter extensive-form games
with imperfect information.



We represent an agent's
uncertainty over what choice
node they're at by an
information set.
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Adding Uncertainty: A Dashed Line
Player 1 takes takes an action: a or a’.
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Adding Uncertainty: A Dashed Line

dashed line representsuncertainty over the action taken

Player 1 takes takes an action: a or a’.

Player 2 follows up, not knowing what action Player 1
has actually taken: the two nodes connected by a
dashed line are in the same information set.

these choice nodes are partof the same information set
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2

_ , _ _ , _

2

_ , _ _ , _

a'a

b b' b b'

Adding Uncertainty: A Dashed Line

dashed line representsuncertainty over the action taken

Player 1 takes takes an action: a or a’.

Player 2 follows up, not knowing what action Player 1
has actually taken: the two nodes connected by a
dashed line are in the same information set.

Payoffs are specific to the branch taken.

Players know the actions available to all players, and
the payoffs corresponding to each sequence of
actions, i.e., the structure of the game.

But do not know which node from a particular
information set they’re in. 

these choice nodes are partof the same information set



Intuitively, an agent cannot
distinguish between the
actions in one of their
information sets.



Like their perfect-information counterparts, extensive-form
games with perfect information are modeled as trees.
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With the added proviso that the actions available at every
information set are the same for all actions in that set. 



Like their perfect-information counterparts, extensive-form
games with perfect information are modeled as trees.

The main difference is that every agent's choice nodes are
partitioned into information sets.

With the added proviso that the actions available at every
information set are the same for all actions in that set. 

A strategy for an agent is a combination of actions, one for each
information set corresponding to that agent.

rather than for each choice node



1a

2

L R

B

1, 1

1b 1c

A

0, 0 2, 4 2, 4 0, 0

X Y X Y

Players
N = {1, 2}

Strategies of player 1
(L, X), (L, Y), (R, X), (R, Y)

A, B
Strategies of player 2

Strategy profiles
((L, X), A), ((L, X), B), ...

Payoffs (aka utilities)
you can figure this out

not (L, X, X), (L, X, Y), ..., which would

be the case with perfect information

Information sets of Player 1
{1a}, {1b, 1c}

Information sets of Player 2
{2}



Now we can finally get back to
the Prisoner’s Dilemma!



Cooperate Defect

Cooperate 2, 2 0, 3

Defect 3, 0 1, 1

1

2

2, 2 0, 3

2

3, 0 1, 1

Cooperate Defect

Cooperate CooperateDefect Defect
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2 2

Cooperate Defect

Cooperate CooperateDefect Defect

2, 2 0, 3 3, 0 1, 1

Cooperate Defect

Cooperate 2, 2 0, 3

Defect 3, 0 1, 1
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2 2

Cooperate Defect

Cooperate CooperateDefect Defect

2, 2 0, 3 3, 0 1, 1

Cooperate Defect

Cooperate 2, 2 0, 3

Defect 3, 0 1, 1



1

2 2

Cooperate Defect

Cooperate CooperateDefect Defect

could equally place Player 2at the root.

2, 2 0, 3 3, 0 1, 1

Cooperate Defect

Cooperate 2, 2 0, 3

Defect 3, 0 1, 1



Note that we can’t model the Prisoner’s
Dilemma as an extensive-form game with
perfect information.

Because, well, players don’t have perfect
information.

But we can model it as a game of imperfect
information.



Not only that, but now we
can even model the iterated
Prisoner’s Dilemma!



A finite number of rounds.



A finite number of rounds.

Like, say, two.
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mixed Nash equilibria
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Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

1/2

2 iterations
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1

2 2

1

Cooperate Defect

1 1 1

2 2 2 2 2 2 2 2

4, 4

Cooperate Defect

Cooperate

Cooperate

Defect

Defect

2, 5 5, 2 3, 3 2, 5 0, 6 3, 3 1, 4 5, 2 3, 3 6, 0 4, 1 3, 3 1, 4 4, 1 2, 2

Defect

Cooperate CooperateDefect Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect Cooperate Defect

Cooperate Defect Cooperate Defect Cooperate Defect

Cooperate

Two Rounds of the
Prisoner’s Dilemma



Note that players know actions
taken at previous rounds.

And thus can condition their
strategies on what happened
previously.



Players
N = {1, 2}

Strategies of Player 1
(C, C), (C, D), (D, C), (D, D)

Payoffs (aka utilities)
hopefully clear

Strategies of Player 2
(C, C), (C, D), (D, C), (D, D)

Strategy profiles
((C, C), (C, C)), ((C, C), (C, D)), ...



Straightforward to get a
table now.



strictly dominant strategies

payoffs

Pareto optimal strategy profiles

pure Nash equilibria

2/2

mixed Nash equilibria

?

?

?

?

C, C C, D D, C D, D

C, C 2 + 2, 2 + 2 2 + 0, 2 + 3 0 + 2, 3 + 2 0 + 0, 3 + 3

C, D 2 + 3, 2 + 0 2 + 1, 2 + 1 0 + 3, 3 + 0 0 + 1, 3 + 1

D, C 3 + 2, 0 + 2 3 + 0, 0 + 3 1 + 2, 1 + 2 1 + 0, 1 + 3

D, D 3 + 3, 0 + 0 3 + 1, 0 + 1 1 + 3, 1 + 0 1 + 1, 1 + 1

Iterated Prisoner’s Dilemma

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

1/2

2 iterations
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mixed Nash equilibria

?

?

?

?

Iterated Prisoner’s Dilemma

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

1/2

2 iterations C, C C, D D, C D, D

C, C 4, 4 2, 5 2, 5 0, 6

C, D 5, 2 3, 3 3, 3 1, 4

D, C 5, 2 3, 3 3, 3 1, 4

D, D 6, 0 4, 1 4, 1 2, 2



In general, every game of imperfect
information corresponds to a normal-form
game, and vice-versa.

Thus, Nash equilibria and everything else
are defined as for normal-form games.



So how do we analyze the 2-
round Prisoner’s Dilemma?
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?

Iterated Prisoner’s Dilemma

Two players play the Prisoner’s
Dilemma over k = 2 rounds.

The final payoffs are the sum of the
payoffs from each round.

1/2

2 iterations C, C C, D D, C D, D

C, C 4, 4 2, 5 2, 5 0, 6

C, D 5, 2 3, 3 3, 3 1, 4

D, C 5, 2 3, 3 3, 3 1, 4
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Again, the only Nash equilibrium is to
always defect, for both players.

Note that we’d get the same equilibrium by
backward induction.

Note, as well, that we’d get the same
conclusion for k > 2 rounds.



Well that was pointless.



Well that was pointless.

Let’s do a recap of where we are.
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In the Prisoner’s Dilemma, the unique Nash equilibrium (in strictly
dominant strategies even) requires both players to defect.

We often observe cooperation in the real world.

What should we add to our model to make cooperation rational?

Maybe if players acknowledge they are in a repeated relationship.

Unfortunately, if the Prisoner’s Dilemma is repeated a commonly
known finite number of times, backwards induction implies that
players still defect at every round.



What if the game is played for an infinite number of times?
ROBERT AUMANN

As in, we don’t have a fixed number k of rounds at which the
game ends.



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

but an infinite number of times.

The final payoffs are the sum of the
payoffs from each round.

C D

C 2, 2 0, 3

D 3, 0 1, 1

1/2

infinitely iterated

Players
N = {1, 2}

Strategies of Player 1
(C, C, ...), (C, D, ....), ...

Strategies of Player 2
(C, C, ...), (C, D, ....), ...

Payoffs (aka utilities)

For instance, if both players always cooperate,
payoffs are infinite series: (2, 2, ...), and the
final payoff is:

In general, infinite sums.
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follows.

At every new round, the payoffs are multiplied by δ.
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follows.

At every new round, the payoffs are multiplied by δ.

So for δ = 0.8, $100 today is worth 0.8 • $100 = $80 tomorrow,
and 0.8 • $80 = $64 in two days.
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account the discount factor δ.
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Strategies of Player 1
(C, C, ...), (C, D, ....), ...

Strategies of Player 2
(C, C, ...), (C, D, ....), ...

Payoffs (aka utilities)

For instance, if both players always cooperate,
payoffs are infinite series: (2, 2δ, 2δ², ...), and
the final payoff is:

In general, infinite sums.



In general, for infinite sums we can use the
following identity, for 0 < x < 1:
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payoffs from each round, taking into
account the discount factor δ.

C D

C 2, 2 0, 3

D 3, 0 1, 1

1/2

infinitely iterated, with discount factor, 0 < δ < 1

Players
N = {1, 2}

Strategies of Player 1
(C, C, ...), (C, D, ....), ...
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Payoffs (aka utilities)

For instance, if both players always cooperate,
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the final payoff is:

In general, infinite sums.



What does the discount factor
δ stand for?



Interpreting the discount factor
Patience

For a discount factor δ you value $1, received t rounds from now, at $1⋅ δᵗ.

This is less than $1, because 0 < δ < 1.

You’re more patient the less you mind waiting for something valuable, rather than
receiving it immediately.

As δ gets closer to 1, the agent is more patient.



Interpreting the discount factor
Patience

For a discount factor δ you value $1, received t rounds from now, at $1⋅ δᵗ.

Uncertainty about the future
You might prefer $1 today to $1 tomorrow because you’re not sure tomorrow will even
come.

This is less than $1, because 0 < δ < 1.

You’re more patient the less you mind waiting for something valuable, rather than
receiving it immediately.

As δ gets closer to 1, the agent is more patient.

δ can be the probability that there is a round t + 1, if round t has happened.

$1⋅ δᵗ is then the expected payoff at round t.



Consider, now, the following strategy, called Grim Trigger.
ROBERT AUMANN

Start by cooperating. If the other player defects at some
round t, switch to defecting forever, i.e., at every round t’ > t. 



Let’s look at a run of the game
when one player plays Grim
Trigger.



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

but an infinite number of times.
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infinitely iterated, with discount factor 0 < δ < 1

Example Runs with Grim Trigger

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Start by cooperating; defect once at some random round t > 1

Sample run
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And when both players use
Grim Trigger?
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Does any agent have an
incentive to deviate from Grim
Trigger?
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Strategy of Player 2
Deviate, starting at first round

Sample run

Strategy of Player 1
Grim Trigger

Strategy of Player 2
Grim Trigger

Sample run

Profitable?
Not a profitable deviation for Player 2 as long as:

which happens if and only if:

Player 2 deviates by always defecting



What if Player 2 defects later?
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Note that once Player 2 triggers Player 1 by
defecting, Player 2 has no incentive to start
cooperating again if all-defection is not
profitable.



ROBERT AUMANN
We’ve just shown that if δ ≥ 0.5, no agent has an incentive to

deviate.

In other words, both players playing Grim Trigger is a Nash
equilibrium!



Infinite games (with sufficiently
large discount factor) admit
equilibria where players cooperate!

Finally, a positive result!



If players send out a clear signal
that they cannot be pushed around,
it makes sense to cooperate.

The moral?



ROBERT AUMANN
There’s many other ways of analyzing repeated games.

With or without discounting, with different ways of computing total
payoffs, with different types of equilibria (Nash, subgame-perfect).

When these equilibria can be achieved is the subject of intense
research.

Results here usually go under the name of folk theorems.



At the same time, Grim Trigger strategies
are just one drop in the vast sea of possible
strategies.

They are especially unforgiving, and do not
match what we see in real life.



What else can we do?



ROBERT AXELROD
How about this.

Axelrod, R. (1984), The Evolution of Cooperation. Basic Books
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Take a bunch of strategies, whatever sounds plausible, and
pit them against each other.

Tournament style!

Axelrod, R. (1984), The Evolution of Cooperation. Basic Books



ROBERT AXELROD
How about this.

Take a bunch of strategies, whatever sounds plausible, and
pit them against each other.

Tournament style!

Strategies with highest average payoffs are declared the
winners.

Axelrod, R. (1984), The Evolution of Cooperation. Basic Books
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tournament, played on the computer.



Axelrod organized such a tournament in the late ‘70s.

He invited researchers from across the world to submit strategies
for the repeated Prisoner’s Dilemma (200 rounds).

Strategies could take into account previous moves, and could be as
complex as their authors wanted.

They were then pitted against each other in a round-robin
tournament, played on the computer.

Fourteen strategies were submitted, and Axelrod added one extra.



How would you play?



Here’s some of the strategies
that were submitted.

How would you play?



ROBERT AXELROD
Random: cooperate and defect randomly.
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Tit-for-tat: start by cooperating, then copy opponent’s
previous move.

ANATOL RAPOPORT



ROBERT AXELROD
Random: cooperate and defect randomly.

Tit-for-tat: start by cooperating, then copy opponent’s
previous move.

ANATOL RAPOPORT

JOHANN JOSS
Defect after other player defects (like tit-for-tat).

When the other player cooperates, cooperate 90% of the
time. And, hence, defect 10% of the time.



ROBERT AXELROD
Random: cooperate and defect randomly.

Tit-for-tat: start by cooperating, then copy opponent’s
previous move.

ANATOL RAPOPORT

Play tit-for-tat 50 moves, defect once, play tit for tat for
another 5 moves, and then examine the history of the game
so far.

Try to guess the opponent, and adjust moves accordingly.

JAMES GRAASKAMP

JOHANN JOSS
Defect after other player defects (like tit-for-tat).

When the other player cooperates, cooperate 90% of the
time. And, hence, defect 10% of the time.



Iterated Prisoner’s Dilemma

Two players play the regular
Prisoner’s Dilemma: 

Game is played 8 across rounds.

The final payoffs are the sum of the
payoffs from each round.

C D

C 2, 2 0, 3

D 3, 0 1, 1

strategy actions taken (8 rounds) payoffs total payoff

Player 1 random C, C, D, C, C, D, C, C 2, 2, 3, 0, 2, 3, 0, 2 14

Player 2 tit-for-tat C, C, C, D, C, C, D, C 2, 2, 0, 3, 2, 0, 3, 2 14

1/2

Iterated for 8 rounds

Random vs tit-for-tat

Random, p = 0.7 (Axelrod)
Cooperate with probability p, defect with probability 1 - p.

Sample run

Tit-for-tat (Rapoport)
Start by cooperating; thereafter copy opponent’s last move.



Who won?



ROBERT AXELROD
One would expect the most complex, sophisticated program

would win.

But in fact, tit-for-tat won.

This was pretty much the simplest strategy submitted: the
code for it was four lines.



Tit-for-tat versus an occasional
cooperator



ROBERT AXELROD

A couple of years later, I organized another tournament, this
time with 63 entries submitted.



One was mine, called tit-for-tw0-tats: cooperate unless
opponent defects twice in a row.

JOHN MAYNARD SMITH

ROBERT AXELROD

A couple of years later, I organized another tournament, this
time with 63 entries submitted.



One was mine, called tit-for-tw0-tats: cooperate unless
opponent defects twice in a row.

JOHN MAYNARD SMITH

ROBERT AXELROD

A couple of years later, I organized another tournament, this
time with 63 entries submitted.

ROBERT AXELROD
Tit-for-tat won again.



Morals?



ROBERT AXELROD

One property shared by the highest-scoring strategies.

Being nice.

That is, never being the first to defect.

Tit-for-tat does not bear a grudge beyond the immediate
retaliation, and provides the opportunity to establish ‘trust’

between opponents.



Does Axelrod’s tournament say
anything about the real world?



ROBERT L. TRIVERS

Yes! We can see reciprocity throughout the natural world.

Trivers, R.L. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology. 46: 35–57.

Stickleback fish rely on tit-for-tat to inspect potential
predators.

MANFRED MILINSKI

Milinski, M. (1987). TIT FOR TAT in sticklebacks and the evolution of cooperation. Nature,
325(6103), 433–435.


