COOPERATION: HOW TO MODELIT, HOW TO FOSTER IT, AND HOW IT MIGHT HAVE EMERGED

GAME THEORY 101 Stags, Prisoners and Equilibria

Adrian Haret

a.haret@uva.nl

November 9-16, 2023

Game theory is about interactions between independent, selfinterested agents.

We start with how agents quantify their preferences and take decisions.

DECISIONS, DECISIONS

How should a rational agent make decisions?

ZEKE FAUX

[...] no matter what Bankman-Fried was doing, he was constantly assessing the odds, costs, and benefits.

ZEKE FAUX

[...] no matter what Bankman-Fried was doing, he was constantly assessing the odds, costs, and benefits.

Any decision could be boiled down to an "expected value," [...] whether that was a move in a board-game marathon, a billion-dollar trade, or whether to chat with Bezos at a party.

ZEKE FAUX

[...] no matter what Bankman-Fried was doing, he was constantly assessing the odds, costs, and benefits.

Any decision could be boiled down to an "expected value," [...] whether that was a move in a board-game marathon, a billion-dollar trade, or whether to chat with Bezos at a party.

Bankman-Fried's goal was always to make as much money as possible, so that he could give it to charity.

ZEKE FAUX

[...] no matter what Bankman-Fried was doing, he was constantly assessing the odds, costs, and benefits.

Any decision could be boiled down to an "expected value," [...] whether that was a move in a board-game marathon, a billion-dollar trade, or whether to chat with Bezos at a party.

Bankman-Fried's goal was always to make as much money as possible, so that he could give it to charity.

By this metric, even sleep was an unjustifiable luxury. The expected value of staying awake to trade was too high.

ZEKE FAUX

[...] no matter what Bankman-Fried was doing, he was constantly assessing the odds, costs, and benefits.

Any decision could be boiled down to an "expected value," [...] whether that was a move in a board-game marathon, a billion-dollar trade, or whether to chat with Bezos at a party.

Bankman-Fried's goal was always to make as much money as possible, so that he could give it to charity.

By this metric, even sleep was an unjustifiable luxury. The expected value of staying awake to trade was too high.

Faux, Z. (2023). Number Go Up: Inside Crypto's Wild Rise and Staggering Fall. Crown Currency.

SAM BANKMAN-FRIED
Every minute you spend sleeping is costing you x-thousand dollars, and that directly means you can save this many less lives.

Let's look at a concrete example.

I'm taking the train from Brussels to Munich.

Option 1

Brussels - Frankfurt - München

Option 2
Brussels - Köln - München

23:20

I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.

Option 1
Brussels - Frankfurt - München

I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?

Option 1
Brussels - Frankfurt - München

Option 2
Brussels - Köln - München

I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?

Option 1
Brussels - Frankfurt - München

I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?
But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

Option 1

Brussels - Frankfurt - (Mannheim?) - München

Option 2

Brussels - Köln - München

I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?
But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

This is very likely to happen... So how should we think of this possibility?

Option 1
Brussels - Frankfurt - (Mannheim?) - München
on time ($1 / 3$)
missed connection $(2 / 3)$
-90

Option 2

Brussels - Köln - München

ADRIAN
I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?
But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

This is very likely to happen... So how should we think of this possibility?

Option 1

Brussels - Frankfurt - (Mannheim?) - München
on time ($1 / 3$)
missed connection $(2 / 3)$

0
-90

$$
\begin{aligned}
\mathbb{E}[\text { Route } 1] & =\operatorname{Pr}[\text { on time }] \cdot 0+\operatorname{Pr}[\text { missed connection }] \cdot(-90) \\
& =1 / 3 \cdot 0+2 / 3 \cdot(-90) \\
& =-60 .
\end{aligned}
$$

Option 2

Brussels - Köln - München

ADRIAN
I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?
But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

This is very likely to happen... So how should we think of this possibility?

Now the second option seems better.

Option 1

Brussels - Frankfurt - (Mannheim?) - München
on time ($1 / 3$)
missed connection $(2 / 3)$

0
-90

$$
\begin{aligned}
\mathbb{E}[\text { Route } 1] & =\operatorname{Pr}[\text { on time }] \cdot 0+\operatorname{Pr}[\text { missed connection }] \cdot(-90) \\
& =1 / 3 \cdot 0+2 / 3 \cdot(-90) \\
& =-60 .
\end{aligned}
$$

Option 2

ADRIAN
I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?
But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

This is very likely to happen... So how should we think of this possibility?

Now the second option seems better.
But wait! The second option has some uncertainty too: past experience suggests a likely delay.

Option 1

Brussels - Frankfurt - (Mannheim?) - München
on time ($1 / 3$)
missed connection $(2 / 3)$

0
-90

$$
\begin{aligned}
\mathbb{E}[\text { Route } 1] & =\operatorname{Pr}[\text { on time }] \cdot 0+\operatorname{Pr}[\text { missed connection }] \cdot(-90) \\
& =1 / 3 \cdot 0+2 / 3 \cdot(-90) \\
& =-60 .
\end{aligned}
$$

Option 2

Brussels - Köln - München

ADRIAN
I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?
But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

This is very likely to happen... So how should we think of this possibility?

Now the second option seems better.
But wait! The second option has some uncertainty too: past experience suggests a likely delay.

Option 1

Brussels - Frankfurt - (Mannheim?) - München
on time ($1 / 3$)
missed connection $(2 / 3)$

0
-90

$$
\begin{aligned}
\mathbb{E}[\text { Route } 1] & =\operatorname{Pr}[\text { on time }] \cdot 0+\operatorname{Pr}[\text { missed connection }] \cdot(-90) \\
& =1 / 3 \cdot 0+2 / 3 \cdot(-90) \\
& =-60 .
\end{aligned}
$$

Option 2

Brussels - Köln - München

ADRIAN
I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.

> Which option is best?

But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

This is very likely to happen... So how should we think of this possibility?

Now the second option seems better.
But wait! The second option has some uncertainty too: past experience suggests a likely delay.

Better to stick with the first option after all...

Option 1

Brussels - Frankfurt - (Mannheim?) - München
on time $(1 / 3)$
missed connection $(2 / 3)$
-90

$$
\begin{aligned}
\mathbb{E}[\text { Route } 1] & =\operatorname{Pr}[\text { on time }] \cdot 0+\operatorname{Pr}[\text { missed connection }] \cdot(-90) \\
& =1 / 3 \cdot 0+2 / 3 \cdot(-90) \\
& =-60 .
\end{aligned}
$$

Option 2

Brussels - Köln - München

I'm taking the train from Brussels to Munich.
My utility is determined by the arrival time.
Which option is best?
But with the first option I might miss the Frankfurt connection, meaning and will get home even later.

*Table isn't 100% correct: in general, states need to be mutually exclusive

In general, rational agents (aim to) maximize expected utility.

$$
\mathbb{E}[u(\text { action })]=\sum_{\text {state }}(u(\text { action, state }) \cdot \operatorname{Pr}[\text { state }])
$$

In the previous example utility was defined relative to my immediate self-interest (i.e., getting home as early as possible).

But, in general, it can be whatever we want.

SAM BANKMAN-FRIED
In effective altruism we aim to maximize overall expected utility, i.e., over all (including future) people.

SAM BANKMAN-FRIED
In effective altruism we aim to maximize overall expected utility, i.e., over all (including future) people.

So yeah, I'd take a bet where 51% you double the earth out somewhere else, 49% it all disappears.

SAM BANKMAN-FRIED
In effective altruism we aim to maximize overall expected utility, i.e., over all (including future) people.

So yeah, I'd take a bet where 51% you double the earth out somewhere else, 49% it all disappears.

I honestly think it's negative EV for me to cut my hair. I think it's important for people to think I look crazy.

GAMES IN NORMAL FORM

Now we know how to take optimal decisions, given different states of nature.

But sometimes the 'states' are someone else's decisions.

So what's best for me to do depends on what you do, and vice-versa.

JOHN VON NEUMANN We should call that game theory.

OSKAR MORGENSTERN
And write a classic textbook on it!

JOHN VON NEUMANN We should call that game theory.

OSKAR MORGENSTERN
And write a classic textbook on it!

JOHN VON NEUMANN

Von Neumann, J., \& Morgenstern, O. (1953). Theory of Games and Economic Behavior. Princeton University Press.

A game in normal form consists of players who can take actions, which lead to payoffs.

Glossary of Terms

```
            agents, or players \(N=\{1, \ldots, n\}\)
                        actions of agent \(A_{i}\)
                            action profile \(\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)\)
                    set of all action profiles \(\boldsymbol{A}=A_{1} \times \cdots \times A_{n}\)
utility (payoff) function of agent \(u_{i}: \boldsymbol{A} \rightarrow \mathbb{R}\)
                            utility profile \(\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)\)
                normal-form game ( \(N, \boldsymbol{A}, \boldsymbol{u}\) )
pure strategies of agent \(S_{i}=A_{i}\)
            strategy profile \(\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)\)
set of strategy profiles \(\boldsymbol{S}=S_{1} \times \cdots \times S_{n}\)
utility Qf with respect to strategy profils \(u_{i}(\boldsymbol{s})=u_{i}(\boldsymbol{a})\)
    \(\boldsymbol{s}\) witho.g \(\boldsymbol{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)\)
    \(\boldsymbol{S}\) equivalently \(\boldsymbol{s}=\left(s_{i}, \boldsymbol{s}_{-i}\right)\)
```


Let's meet our first game!

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

We generally assume that player 1 is the row player and player 2 is the column player.

Players
$N=\{1,2\}$

Actions of player 1

\{Stag, Hare\}

Actions of player 2

\{Stag, Hare\}

Strategies

\{(Stag, Stag), (Stag, Hare), (Hare, Stag), (Hare, Hare)\}
Payoffs (aka utilities)
$u_{1}($ Stag, Stag $)=10$
$u_{2}($ Stag, Hare $)=6$
payoffs

player 2	Stag	Hare
Stag	10,10	0,6
Hare	6,0	3,3

If we knew what strategies players would play we could go on and compute their utilities, expected utilities and so
on.

JOHN VON NEUMANN
But that's not how rational agents behave: strategies change depending on what others do.

OSKAR MORGENSTERN

Indeed! If the column player goes for the hare, the row player will want to do the same.

JOHN VON NEUMANN
We need to reason the other way around: from utilities to strategies.

OSKAR MORGENSTERN We need to reason about solution concepts.

A solution concept describes what strategies we might expect the players will adopt.

And, therefore, the result of the game.

The first solution concept we look at is based on dominance.

A player has a dominated strategy if the player could do uniformly
better by playing a different strategy.

DEFINITION (STRICT DOMINANCE AMONG STRATEGIES)

Strategy s_{i} strictly dominates strategy s_{i}^{\prime} if $u_{i}\left(s_{i}, \boldsymbol{s}_{-i}\right)>u_{i}\left(s_{i}^{\prime}, \boldsymbol{s}_{-i}\right)$, for any profile $\boldsymbol{s}_{i}^{\prime}$ of other agents' strategies.

Strategy s_{i} is strictly dominant (for player i) if it strictly dominates any other strategy s_{i}^{\prime}.

Does T strictly dominate M, for player 1 ?

	L	C	R
T	3, 0	2, 1	0, 0
M	1,1	1,1	5, 0
B	0,1	4, 2	0,1

Does T strictly dominate M, for player 1? No!
If player 2 plays L : $3>1$
If player 2 plays C : $2>1$
If player 2 plays R: $0<5$ X

	L	C	R
T	3,0	2,1	0, 0
M	1, 1	1, 1	5, 0
B	0,1	4, 2	0,1

Does T strictly dominate M, for player 1? No!
If player 2 plays L : $3>1$
If player 2 plays C : $2>1$
If player 2 plays R : $0<5$
Does C strictly dominate L, for player 2?

	L	C	R
T	3, 0	2, 1	0, 0
M	1,1	1,1	5, 0
B	0,1	4, 2	0,1

Does T strictly dominate M, for player 1? No!
If player 2 plays L : $3>1$
If player 2 plays C : $2>1$
If player 2 plays $\mathrm{R}: 0<5 \geqslant$
Does C strictly dominate L, for player 2? No!
If player 1 plays $\mathrm{T}: 1>0$
If player 1 plays M: $1=1$
If player 1 plays B : $2>1$

	L	C	R
T	3,0	2,1	0, 0
M	1, 1	1,1	5, 0
B	0,1	4, 2	0,1

Does T strictly dominate M, for player 1? No!
If player 2 plays L : $3>1$
If player 2 plays C : $2>1$
If player 2 plays $\mathrm{R}: 0<5 \geqslant$
Does C strictly dominate L, for player 2? No!
If player 1 plays $\mathrm{T}: 1>0$
If player 1 plays $\mathrm{M}: 1=1$
If player 1 plays $\mathrm{B}: 2>1$
Does C strictly dominate R, for player 2?

	L	C	R
T	3, 0	2, 1	0, 0
M	1,1	1,1	5, 0
B	0,1	4, 2	0,1

Does T strictly dominate M, for player 1? No!
If player 2 plays L : $3>1$
If player 2 plays C : $2>1$
If player 2 plays R : $0<5$
Does C strictly dominate L , for player 2 ? No!
If player 1 plays $\mathrm{T}: 1>0$
If player 1 plays $\mathrm{M}: 1=1$
If player 1 plays B : $2>1$
Does C strictly dominate R , for player 2? Yes! If player 1 plays $\mathrm{T}: 1>0$
If player 1 plays $\mathrm{M}: 1>0$
If player 1 plays B: $2>1$

	L	C	R
T	3, 0	2, 1	0, 0
M	1, 1	1, 1	5, 0
B	0,1	4, 2	0,1

There is no point in playing a strictly dominated strategy.

Which means we can successively eliminate any such strategies from a player's arsenal.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.
strictly dominant strategies
A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both
 hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.
strictly dominant strategies
A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

Strictly dominant strategies always exist.

Strictly dominant strategies always exist.

Except when they don't: it's a very strong solution concept!

Enter Pareto.

VILFREDO PARETO
Better to look at outcomes where everyone is as well-off as can be.
In a Pareto optimal outcome no one can be made better off without making someone else worse off.

DEFINITION (PARETO DOMINATION)
A strategy profile s Pareto dominates strategy profile s^{\prime} if:
(i) $u_{i}(s) \geq u_{i}\left(s^{\prime}\right)$, for every agent i, and
(ii) there exists an agent j such that $u_{j}(s)>u_{j}\left(s^{\prime}\right)$.

DEFINITION (PARETO OPTIMALITY)

A strategy profile s is Pareto optimal if there is no (other) strategy profile s^{\prime} that Pareto dominates s.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

Time for a new game!

The Coordination Game

There is a country with no traffic rules.
Two cars are on the road, driving towards each other.

They have to decide what side of the road to take.

If they choose the same side, all is well.

If they choose different sides, they bump into each other.

The Coordination Game

There is a country with no traffic rules.
Two cars are on the road, driving towards each other.

They have to decide what side of the road to take.

If they choose the same side, all is well.

If they choose different sides, they bump into each other.

The Coordination Game

There is a country with no traffic rules.
Two cars are on the road, driving towards each other.

They have to decide what side of the road to take.

If they choose the same side, all is well.

If they choose different sides, they bump into each other.

VILFREDO PARETO Pareto domination defines a partial order over strategy profiles:

Pareto optimal outcomes always exist.
For real! Check for yourselves if you don't believe it.

May not be unique though.

DAVID LEWIS
Coordination problems are everywhere in social interactions, and are at the heart of the conventions that become social norms.

Rescorla, M. (2019). Convention. Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy
(Summer 2019 Edition)

H. PEYTON YOUNG

Drivers coordinate to avoid collisions on the road. Economic agents eliminate the need for barter by coordinating upon a common monetary currency.

Young, H. P. (1996). The Economics of Convention. The Journal of Economic Perspectives, 10(2), 105-122.

DAVID LEWIS
Language is a coordination game.

Just that they're 'efficient', in the sense of not leaving money on the table.

Consider the game on the right, played between the land-owner and the farmers, on how the spoils of the land are divided.

strictly dominant strategies
none
Pareto optimal strategy profiles (Feudalism, Feudalism), (Capitalism, Capitalism), (Communism, Communism)

Nonetheless, Pareto optimal is (a minimal requirement on) where we want to be.

But can we expect that players end up there?

Enter Nash.

In a Nash equilibrium no one has an incentive to change their strategy, given the other players' strategies.

DEFINITION (BEST RESPONSE)

Player i 's best response to the other players' strategies $\boldsymbol{s}_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$ is a strategy s_{i}^{*} such that $u_{i}\left(s_{i}^{*}, \boldsymbol{s}_{-i}\right) \geq u_{i}\left(s_{i}^{*}, \boldsymbol{s}_{-i}\right)$, for any strategy s_{i} of player i.

DEFINITION (BEST RESPONSE)

Player i 's best response to the other players' strategies $s_{-i}=\left(s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n}\right)$ is a strategy s_{i}^{*} such that $u_{i}\left(s_{i}^{*}, \boldsymbol{s}_{-i}\right) \geq u_{i}\left(s_{i}^{*}, s_{-i}\right)$, for any strategy s_{i} of player i.

DEFINITION (PURE NASH EQUILIBRIUM)

A strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a pure Nash equilibrium if s_{i}^{*} is a best response to s_{-i}^{*}, for every player i.

In other words, given strategy profile s^{*}, there is no player i and strategy s_{i}^{\prime} such that $u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)$.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

And now for the moment we've all been waiting for.

The Prisoner's Dilemma IVIN

You and a friend are at the police station. You are the main suspects in a string of Oktoberfest beer thefts.

You are interrogated at the same time, in separate rooms.

If both of you stick to the common story (Cooperate), you get off with a smallish fine.

But if you tell on your friend (Defect) you get off free, while they get a hefty fine.

Your friend faces the same situation.
If you rat each other out, you split the large fine.

The Prisoner's Dilemma [區

You and a friend are at the police station. You are the main suspects in a string of Oktoberfest beer thefts.

You are interrogated at the same time, in separate rooms.

If both of you stick to the common story (Cooperate), you get off with a smallish fine.

But if you tell on your friend (Defect) you get off free, while they get a hefty fine.

Your friend faces the same situation.
If you rat each other out, you split the large fine.

JOHN NASH
Pure Nash equilibria always exist... Except when they don't! See, for instance, the Matching Pennies game.

Matching Pennies

Two players each have a penny.
Each decides on a face and reveals it at the same time.

If the faces match, player 1 wins \$1, player 2 loses $\$ 1$.

If the faces do not match, player 2 wins.

JOHN NASH
Pure Nash equilibria always exist... Except when they don't! See, for instance, the Matching Pennies game.

Pure Nash equilibria always exist... Except when they don't! See, for instance, the Matching Pennies game.

In a Nash Equilibrium everyone is as well off as they can be.

Pure Nash equilibria always exist... Except when they don't! See, for instance, the Matching Pennies game.

In a Nash Equilibrium everyone is as well off as they can be.
Except that they're not!

The Prisoner's Dilemma IVIN

You and a friend are at the police station. You are the main suspects in a string of Oktoberfest beer thefts.

You are interrogated at the same time, in separate rooms.

If both of you stick to the common story (Cooperate), you get off with a smallish fine.

But if you tell on your friend (Defect) you get off free, while they get a hefty fine.

Your friend faces the same situation.
If you rat each other out, you split the large fine.

The Prisoner's Dilemma [燐

You and a friend are at the police station. You are the main suspects in a string of Oktoberfest beer thefts.

You are interrogated at the same time, in separate rooms.

If both of you stick to the common story (Cooperate), you get off with a smallish fine.

But if you tell on your friend (Defect) you get off free, while they get a hefty tine.

Your friend faces the same situation.
If you rat each other out, you split the large fine.

Pure Nash equilibria always exist... Except when they don't! See, for instance, the Matching Pennies game.

In a Nash Equilibrium everyone is as well off as they can be.
Except that they're not!
In the Prisoner's Dilemma every outcome except the Nash equilibrium is Pareto optimal!

Pure Nash equilibria always exist... Except when they don't! See, for instance, the Matching Pennies game.

In a Nash Equilibrium everyone is as well off as they can be.
Except that they're not!
In the Prisoner's Dilemma every outcome except the Nash equilibrium is Pareto optimal!

In fact defection is an even stronger outcome, in terms of solution concepts we've seen so far.

The Prisoner's Dilemma [區

You and a friend are at the police station. You are the main suspects in a string of Oktoberfest beer thefts.

You are interrogated at the same time, in separate rooms.

If both of you stick to the common story (Cooperate), you get off with a smallish fine.

But if you tell on your friend (Defect) you get off free, while they get a hefty fine.

Your friend faces the same situation.
If you rat each other out, you split the large fine.

The Prisoner's Dilemma IVIN

You and a friend are at the police station. You are the main suspects in a string of Oktoberfest beer thefts.

You are interrogated at the same time, in separate rooms.

If both of you stick to the common story (Cooperate), you get off with a smallish fine.

But if you tell on your friend (Defect) you get off free, while they get a hefty tine.

Your friend faces the same situation.
If you rat each other out, you split the large fine.

Pure Nash equilibria always exist... Except when they don't! See, for instance, the Matching Pennies game.

In a Nash Equilibrium everyone is as well off as they can be.
Except that they're not!
In the Prisoner's Dilemma every outcome except the Nash equilibrium is Pareto optimal!

In fact defection is an even stronger outcome, in terms of solution concepts we've seen so far.

Btw, a strictly dominating strategy profile, if it exists, is a (pure) Nash equilibrium. Though not necessarily the other way around.

So far we've assumed that strategies are pure: chooses an action and stick to it.

But it also makes sense for players to randomize between actions.

A mixed strategy is a probability distribution over

$$
s_{i}=\left(p_{1}, \ldots, p_{j}, \ldots\right)
$$ actions.

Stag Hunt

Two hunters have to decide what to hunt: one stag or two hares.

If they hunt together, any catch is divided equally.

A stag is worth a lot (more than both hares combined!), but can only be caught by the two hunters working together. If a hunter goes for the stag alone, they end up with nothing.

A hunter goes for hare while the other for stag, the first gets both hares and does not have to share.

STRATEGIES

$$
s_{1}=(1 / 10,9 / 10) \quad s_{2}=(1 / 5,4 / 5)
$$

STRATEGY PROFILE

$$
\boldsymbol{s}=\left(s_{1}, s_{2}\right)
$$

payoffs

strictly dominant strategies
none
Pareto optimal strategy profiles (Stag, Stag)
pure Nash equilibria (Stag, Stag), (Hare, Hare)

STRATEGY PROFILE

$s=\left(s_{1}, s_{2}\right)$

UTILITY OF PLAYER 1 WITH THESE STRATEGIES

All utilities become expected utilities.

STRATEGIES

$$
s_{1}=(1 / 10,9 / 10) \quad s_{2}=(1 / 5,4 / 5)
$$

STRATEGY PROFILE

$\boldsymbol{s}=\left(s_{1}, s_{2}\right)$

UTILITY OF PLAYER 1 WITH THESE STRATEGIES

$u_{1}(\boldsymbol{s})=u_{1}\left(\right.$ Stag,$\left.s_{2}\right) \cdot \operatorname{Pr}[1$ plays Stag $]+u_{1}\left(\right.$ Hare, $\left.s_{2}\right) \cdot \operatorname{Pr}[1$ plays Hare $]$

$$
\begin{aligned}
= & \left(u_{1}(\text { Stag, Stag }) \cdot \operatorname{Pr}[2 \text { plays Stag }]+u_{1}(\text { Stag, Hare }) \cdot \operatorname{Pr}[2 \text { plays Hare }]\right) \cdot \operatorname{Pr}[1 \text { plays Stag }]+ \\
& \left(u_{1}(\text { Hare, Stag }) \cdot \operatorname{Pr}[2 \text { plays Stag }]+u_{1}(\text { Hare, Hare }) \cdot \operatorname{Pr}[2 \text { plays Hare }]\right) \cdot \operatorname{Pr}[1 \text { plays Hare }] \\
& (10 \cdot 1 / 5+0 \cdot 4 / 5) \cdot 1 / 10+(6 \cdot 1 / 5+3 \cdot 4 / 5) \cdot 9 / 10 \\
= & 3.44 .
\end{aligned}
$$

payoffs

strictly dominant strategies

Pareto optimal strategy profiles (Stag, Stag)
pure Nash equilibria (Stag, Stag), (Hare, Hare)

STRATEGIES

$$
s_{1}=(1 / 10,9 / 10) \quad s_{2}=(1 / 5,4 / 5)
$$

STRATEGY PROFILE

$\boldsymbol{s}=\left(s_{1}, s_{2}\right)$

UTILITY OF PLAYER 1 WITH THESE STRATEGIES

$u_{1}(\boldsymbol{s})=u_{1}\left(\right.$ Stag,$\left.s_{2}\right) \cdot \operatorname{Pr}[1$ plays Stag $]+u_{1}\left(\right.$ Hare, $\left.s_{2}\right) \cdot \operatorname{Pr}[1$ plays Hare $]$

$$
\begin{aligned}
= & \left(u_{1}(\text { Stag }, \text { Stag }) \cdot \operatorname{Pr}[2 \text { plays Stag }]+u_{1}(\text { Stag, Hare }) \cdot \operatorname{Pr}[2 \text { plays Hare }]\right) \cdot \operatorname{Pr}[1 \text { plays Stag }]+ \\
& \left(u_{1}(\text { Hare, Stag }) \cdot \operatorname{Pr}[2 \text { plays Stag }]+u_{1}(\text { Hare, Hare }) \cdot \operatorname{Pr}[2 \text { plays Hare }]\right) \cdot \operatorname{Pr}[1 \text { plays Hare }] \\
d^{\text {in }}= & (10 \cdot 1 / 5+0 \cdot 4 / 5) \cdot 1 / 10+(6 \cdot 1 / 5+3 \cdot 4 / 5) \cdot 9 / 10 \\
= & 3.44 .
\end{aligned}
$$

UTILITY OF PLAYER 2 WITH THESE STRATEGIES analogously
payoffs

strictly dominant strategies

Pareto optimal strategy profiles (Stag, Stag)
pure Nash equilibria (Stag, Stag), (Hare, Hare)

Nash equilibria with mixed strategies are defined in the same way as for pure strategies: no one has an incentive to deviate, given the other players' actions.

THEOREM (NASH, 1951)
Any game with a finite number of players and finite actions has a Nash equilibrium in mixed strategies.

In a mixed Nash equilibrium, players set the probabilities of their actions in such as a way as to make the other player indifferent between their actions.

This creates a system of equations, which, when solved, delivers the mixed Nash equilibrium.

Matching Pennies

Two players each have a penny.
Each decides on a face and reveals it at the same time.

If the faces match, player 1 wins $\$ 1$, player 2 loses $\$ 1$.

If the faces do not match, player 2 wins.

Matching Pennies

Two players each have a penny.
Each decides on a face and reveals it at the same time.

If the faces match, player 1 wins $\$ 1$, player 2 loses $\$ 1$.

If the faces do not match, player 2 wins.

Moral is that in Matching Pennies you have to play each actions with equal probability.
Anything else and the opponent can exploit you mercilessly.

Moral is that in Matching Pennies you have to play each actions with equal probability. Anything else and the opponent can exploit you mercilessly.

ARIEL RUBINSTEIN
Fun fact: in experiments humans aren't very good at randomizing.
They keep trying to detect patters, are susceptible to stories and framing effects.

[^0]Moral is that in Matching Pennies you have to play each actions with equal probability. Anything else and the opponent can exploit you mercilessly.

ARIEL RUBINSTEIN
Fun fact: in experiments humans aren't very good at randomizing.
They keep trying to detect patters, are susceptible to stories and framing effects.

> Mookherjee, D., \& Sopher, B. (1994). Learning Behavior in an Experimental Matching Pennies Game. Games and Economic Behavior, 7(1), 62-91 Rubinstein, A. (2011). Edgar Allan Poe's riddle: Framing effects in repeated matching pennies games. Cames and Economic Behavior, 71(1), 88-99 Eliaz, K., \& Rubinstein, A. (2011). Edgar Allan Poe's riddle: Framing effects in repeated matching pennies games. Games and Economic Behavior, 71 (1), 88-99.

COLIN CAMERER
But chimps seem to be pretty good at it.

How is this relevant to the problem of cooperation?

Note that the numbers in the payoff matrix are not per se relevant.
What's important is the relationship between them.
That is to say, we should think of the Prisoner's Dilemma as a general scenario in which mutual defection is the equilibrium.

The Prisoner's Dilemma [區

 GENERAL VERSIONThere are two players, each with two actions: Cooperate or Defect.

If they both cooperate they both get a payoff of R (the reward).

If they both defect, they each get a payoff of P (the punishment).

In the case of defection with cooperation, the defector gets T (the temptation), while the cooperator gets S (the sucker's payoff).

The relationship between the payoffs is $T>R>P>S$.

Note that the numbers are not per se relevant.
What matters are the relationships between them.
That is to say, we should think of the Prisoner's Dilemma as a general scenario in which mutual defection is the equilibrium.

MARTIN NOWAK
Things become even clearer when considering a simplified version of the Prisoner's Dilemma: the Donation Game.

The Donation Game

SPECIAL CASE OF PRISONER'S DILEMMA
There are two players, each with two actions: Cooperate or Defect.

A cooperator pays a cost c for the other player to receive a benefit b, with $b>c>0$.

A defector does not pay any cost, and provides no benefit.

Even though cooperation is overall the better outcome, in a Prisoner's Dilemma defection is the rational response!

MOM
 These agents are terrible!

They need better education.

MOM
 These agents are terrible!

They need better education.

True. All evil is a result of ignorance.

True. All evil is a result of ignorance.

If lack of education means agents are not aware of certain aspects of the games (e.g., payoffs), then 'educated' agents should still defect: it's the dominant action!

If education means acquiring a set of reflexes that keep your selfish impulses in check, then that might work... but we still need to figure out in what situations such reflexes make sense.

Note that a simple way out of the problem is if the underlying situation is a different game, e.g., Stag Hunt.

The Stag Hunt is a game where the payoffs from cooperating exceed the temptation to defect.
Stag Hunt games are the reason we have nice things, like society.

Skyrms, B. (2003). The Stag Hunt and the Evolution of Social Structure. Cambridge University Press.

The Stag Hunt is a game where the payoffs from cooperating exceed the temptation to defect.
Stag Hunt games are the reason we have nice things, like society.

Skyrms, B. (2003). The Stag Hunt and the Evolution of Social Structure. Cambridge University Press.

JOHN NASH

In the Prisoner's Dilemma the temptation to be selfish and defect is greater than the payoff from pursuing the common good by cooperating.

The Stag Hunt is a game where the payoffs from cooperating exceed the temptation to defect.
Stag Hunt games are the reason we have nice things, like society.

Skyrms, B. (2003). The Stag Hunt and the Evolution of Social Structure. Cambridge University Press.
JOHN NASH
In the Prisoner's Dilemma the temptation to be selfish and defect is greater than the payoff from pursuing the common good by cooperating.

JOHN W. N. WATKINS
Players in a Prisoner's Dilemma are led, in a way that might have startled Adam Smith, by a malevolent invisible hand to promote an end which was no part of their intention and which none of them wants.

[^1]Sometimes you get a culture that is that is freewheeling, fast-moving, egalitarian, evidence-driven, argumentative, and autonomous.

This is the geek way.
Geek cultures get a lot of things done, because they tap into humanity's superpower: our ability to cooperate intensely and learn rapidly.

McAfee, A. (2023). The Geek Way: The Radical Mindset that Drives Extraordinary Results. Little, Brown
and Company

Sometimes you get a culture that is that is freewheeling, fast-moving, egalitarian, evidence-driven, argumentative, and autonomous.

This is the geek way.
Geek cultures get a lot of things done, because they tap into humanity's superpower: our ability to cooperate intensely and learn rapidly.

McAfee, A. (2023). The Geek Way: The Radical Mindset that Drives Extraordinary Results. Little, Brown and Company

JOHN NASH
Cool... But how can you make sure such a culture doesn't unravel?

VAMPIRE BAT ELDER
Vampire bats face a prisoner's dilemma when having to decide whether to feed their hungry colleagues.

LANCE ARMSTRONG
Sports people too, when deciding whether to take performance enhancing drugs.

Schneier, B. (2006, August 10). Drugs: Sports' Prisoner's Dilemma. Wired.

Or countries deciding whether to cut down carbon emissions.

VAMPIRE BAT ELDER
Vampire bats face a prisoner's dilemma when having to decide whether to feed their hungry colleagues.

LANCE ARMSTRONG
Sports people too, when deciding whether to take performance enhancing drugs.

Schneier, B. (2006, August 10). Drugs: Sports' Prisoner's Dilemma. Wired.

Or countries deciding whether to cut down carbon emissions.

MARTIN NOWAK
Indeed, the Prisoner's Dilemma is the paradigmatic game used to study the evolution of cooperation.

What can we add to our framework to get cooperation in prisoner's-dilemma-type situations?

[^0]: Eliaz, K., \& Rubinstein, A. (2011). Edgar Allan Poe's riddle: Framing effects in repeated matching pennies games. Cames and Economic Behavior, 71 (1), 88-99.

[^1]: Watkins, J. (1985). Second Thoughts on Self-interest and Morality. In Paradoxes of Rationality and Cooperation: Prisoner's Dilemma and Newcomb's Problem. University of British

