RESEARCH SEMINAR IN DECISION AND ACTION THEORY

The Wisdom of Interacting Crowds

Adrian Haret
Nicolien Janssens Giuseppe Dari Mattiacci

Frederik Van De Putte
Davide Grossi

RESEARCH SEMINAR IN DECISION AND ACTION THEORY

The Wisdom of Interacting Crowds Deliberating?

Adrian Haret
Nicolien Janssens Giuseppe Dari Mattiacci

Frederik Van De Putte
Davide Grossi

Sometimes groups get it right.

Does the city of Munich have more than 1.5 million inhabitants?
\square no
\square yes

Does the city of Munich have more than 1.5 million inhabitants?

$$
\begin{aligned}
& \square \text { no } \\
& \nabla \text { yes }
\end{aligned}
$$

Sometimes groups get it wrong.

ODORIC OF PORDENONE In a province of the Grand Can there grow gourds, which, when they are ripe, open, and woithin them is found a little beast like unto a young lamb...

Odoric of Pordenone [trans. Sir Henry Yule] (2002).
The Travels of Friar Odoric. W.B. Eerdman
Publishing Company.

AD 1330

Sirjohn mandeville

In Tartary groweth a manner of fruit, as though it were gourds. And woben they be ripe, men cut them a-two, and men find within a little beast, in flesh, in bone, and blood, as though it weere a little lamb woithout roool. And men eat both the fruit and the beast. And that is a great marvel.
of that fruit I bave eaten...
and found it wondirfulle. Mandeville, J. (1900). The Travels of Sir Jobn Mandeville. The Cotton Manuscript in modern spelling.
Macmillan and Co. Limited. ODORIC OF PORDENONE In a province of the Grand Can there grow gourds, which, when they are ripe, open, and woithin them is found a little beast like unto a young lamb...

Odoric of Pordenone [trans. Sir Henry Yule] (2002). The Travels of Friar Odoric. W.B. Eerdmans

SIR John mandeville

In Tartary groweth a manner of fruit, as though it were gourds. And woben they be ripe, men cut them a-two, and men find within a little beast, in flesh, in bone, and blood, as though it were a little lamb woithout roool. And men eat both the fruit and the beast. And that is a great marvel.
of that fruit I bave eaten...
and found it wondirfulle.
Mandeville, J. (1900). The Travels of Sir John Mandeville. The Cotton Manuscript in modern spelling.
Macmillan and Co. Limited.

ODORIC OF PORDENONE In a province of the Grand Can there grow gourds, which, when they are ripe, open, and woithin them is found a little beast like unto a young lamb...

Odoric of Pordenone [trans. Sir Henry Yule] (2002). The Travels of Friar Odoric. W.B. Eerdmans

BARON SIGISMUND VON HERBERSTEIN
[...] a certain seed like that of a melon, but rather rounder and longer, from wobich, when it was set in the earth, grew a plant resembling a lamb, and attaining to a beight of about two and a balf feet...

Sigmund Freiberr von Herberstein (I85I). Notes Upon Russia: Being a Translation of the Earliest Account of that Country, Entitled Rerum Moscoviticarum Commentarii. Hakluyt Society.

SIR John mandeville

In Tartary groweth a manner of fruit, as though it were gourds. And woben they be ripe, men cut them a-two, and men find woithin a little beast, in flesh, in bone, and blood, as though it were a little lamb woithout woool. And men eat both the fruit and the beast. And that is a great marvel.

Of that fruit I bave eaten...
and found it wondirfulle.
Mandeville, J. (1900). The Travels of Sir Jobn Mandeville. The Cotton Manmscript in modern spelling.

ODORIC OF PORDENONE In a province of the Grand Can there grow gourds, which, when they are ripe, open, and woithin them is found a little beast like unto a young lamb...

SIR JOHN MANDEVILLE

In Tartary groweth a manner of fruit, as though it vere gourds. And when they be ripe, men cut them a-two, and men find woith in a little beast, in flesh, in bone, and blood, as though it were a little lamb without wool. And men eat both the fruit and the beast. And that is a great marvel.

Of that fruit I bave eaten...
and found it wondirfulle.
Mandeville, J. (1900). The Travels of Sir Jobn Mandeville. The Cotton Manuscript in modern spelling. Macmillan and Co. Limited.

ODORIC OF PORDENONE In a province of the Grand Can there grow gourds, which, when they are ripe, open, and woithin them is found a little beast like unto a young lamb...

Odoric of Pordenone [trans. Sir Henry Yule] (2002)
The Travels of Friar Odoric. W.B. Eerdman
Publisbing Company.

AD 1330

ATHANASIUS KIRCHER [...] we assert that it is a plant. Though its form be that of a quadruped, and the juice beneath its woolly covering be blood wobich flows if an incision be made in its flesh, these things will not move us. It will be found to be a plant.
Kircher, A. (164I). Magnes; sive de arte magneticâ opus tripartitum.

BARON SIGISMUND VON HERBERSTEIN
[...] a certain seed like that of a melon, but rather rounder and longer, from wobich, when it was set in the earth, grew a plant resembling a lamb, and attaining to a beight of about two and a balf feet..

Sigmund Freiberr von Herberstein (185I). Notes Upon Russia: Being a Translation of the Earliest Account of that Country, Entitled Rerum Moscoviticarum Commentarii. Hakluyt Society.
CLAUDE DURET

Duret, C. (I605). Histoire Admirable des Plantes.

AD 1605

SIR JOHN MANDEVILLE

In Tartary groweth a manner of fruit, as though it were gourds. And when they be ripe, men cut them a-two, and men find roithin a little beast, in flesh, in bone, and blood, as though it were a little lamb without wool. And men eat both the fruit and the beast. And that is a great marvel.

Of that fruit I bave eaten...
and found it wondirfulle.
Mandeville, J. (I900). The Travels of Sir John Mandeville. The Cotton Manuscript in modern spelling.
Macmillan and Co. Limited.

ODORIC OF PORDENONE In a province of the Grand Can there grow gourds, which, when they are ripe, open, and woithin them is found a little beast like unto a young lamb...

Odoric of Pordenone [trans. Sir Henry Yule] (2002)
The Travels of Friar Odoric. W.B. Eerdman

ENGELBERT KAEMPFER
I bave searched ad risum et nauseam for this zoopbyte feeding on grass, but bave found nothing.

> ATHANASIUSKIRCHER
[...] we assert that it is a plant. Though its form be that of a quadruped, and the juice beneath its woolly covering be blood wobich flows if an incision be made in its flesh, these things nill not move us. It will be found to be a plant.
Kircher, A. (I64I). Magnes; sive de arte magneticâ opus tripartitum.

BARON SIGISMUND VON HERBERSTEIN
[...] a certain seed like that of a melon, but rather rounder and longer, from wobich, when it was set in the earth, grew a plant resembling a lamb, and attaining to a beight of about two and a balf feet..

Sigmund Freiberr von Herberstein (185I). Notes Upon Russia: Being a Translation of the Earliest Account of that Country, Entitled Rerum Moscoviticarum Commentarii. Hakluyt Society.
CLAUDEDURET

Duret, C. (I605). Histoire Admirable des Plantes.

AD 1605

How to think of opinion formation?

Agents as Noisy Estimators of the Truth

Agents as Noisy Estimators of the Truth

I claim that the majority will be correct!
Most of the time...

CONDORCET
I claim that the majority woill be correct!
Most of the time...
Under some conditions...

Assumptions

COMPETENCE

Agents are competent, i.e., better than random at being correct:

INDEPENDENCE

Agents vote independently of each other:

$$
\operatorname{Pr}[i \text { votes } x, j \text { votes } y]=\operatorname{Pr}[i \text { votes } x] \cdot \operatorname{Pr}[j \text { votes } y], \text { for any two agents } i \text { and } j
$$

THEOREM (THE CONDORCET JURY THEOREM)
Under the previous assumptions, it holds that:

$\operatorname{Pr}[$ majority of $n+2$ are correct $]>\operatorname{Pr}[$ majority of n are correct $]$
and
$\lim _{n \rightarrow \infty} \operatorname{Pr}[$ majority of n are correct $]=1$

What if people talk \& persuade each other?

What if people talk \& persuade each other?

What if people talk \& persuade each other?

héLène Landemore

The first, most obvious, and perhaps oldest mechanism that makes democracy an epistemically reliable decision procedure is deliberation.

Landemore, H. (2013). Democratic Reason: Politics, Collective Intelligence, and the Rule of the Many. Princeton University Press.

Deliberation?
 Enter Gommunication

We start with the standard Condorcet Jury Theorem setup, and add the assumption that agents are in a social network.

We start with the standard Condorcet Jury Theorem setup, and add the assumption that agents are in a social network.

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

After which agents update their opinions: to the majority of the signals they see.

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

After which agents update their opinions: to the majority of the signals they see.

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

After which agents update their opinions: to the majority of the signals they see.

Like jurors in a court case, sharing their evidence and thoughts.

Nicolien

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

After which agents update their opinions: to the majority of the signals they see.

GIUSEPPE
Like jurors in a court case, sharing their evidence and thoughts.

This is a simplified account of more sophisticated background Bayesian reasoning.

Nicolien

We also add a deliberation phase, in which agents
share their (independent) private signals with their neighbors.

After which agents update their opinions: to the majority of the signals they see.

GIUSEPPE
Like jurors in a court case, sharing their evidence and thoughts.

DAVIDE

This is a simplified account of more sophisticated background Bayesian reasoning.

FREDERIK
But it results in correlated agents... and maybe more accurate decisions?

CONDORCET
Everyone gets more information, so everyone becomes more accurate, and the group gets even better...

CONDORCET
Everyone gets more information, so everyone becomes more accurate, and the group gets even better...
... right?

Deliberation Gone Wrong

If the influencers get a wrong signal, followers end up believing the wrong thing.

Deliberation Gone Wrong

If the influencers get a wrong signal, followers end up believing the wrong thing.

Deliberation Gone Wrong

If the influencers get a wrong signal, followers end up believing the wrong thing.

The probability of a wrong group decision does not go down as we add more followers.*

Deliberation Gone Wrong

If the influencers get a wrong signal, followers end up believing the wrong thing.

The probability of a wrong group decision does not go down as we add more followers.*

Deliberation Gone Wrong

If the influencers get a wrong signal, followers end up believing the wrong thing.

The probability of a wrong group decision does not go down as we add more followers.*

*This is an entire class of networks where deliberation keeps group accuracy below 1, even as the number of agents grows.

Presumably what happened with the vegetable lamb....

$\mathrm{O} k$, but at least there are some cases in which deliberation belps...

CONDORCET
Ok, but at least there are some cases in wobich deliberation belps...
... right?

THEOREM
Group accuracy after deliberation via any graph G is never better than accuracy of direct voting.*

To see why, let's look first at the signal profiles that lead to correct decisions for direct voting, i.e., when there is no communication.

All signal profiles

All signal profiles

A signal profile that leads to a correct decision

10101 10011
-
 01010 01100 10100 10010 $10001 \quad 11000$
00011

00010 픔
00100

00000

All signal profiles that lead to a correct decision

(1) 2

Let's compare this with the signal profiles that lead to a correct decision when some agents communicate with each other.

Let's add some structure

(1) (2)

3
$00011-00101$ 00110 01001 01010 01100
$10100 \quad 10010 \square$
10001 - 11000
4
00001
00010
00100
01000
10000

00000

Let's add some structure

"

$00011 \square 00101 \square 00110 \square 01001 \square 01010 \square 01100 \square 10100 \square 10010 \square 10001 \square 11000 \square$
(4)

00001
00010
00100
01000
10000

00000

Take one (previously) good signal profile

11111

(4)
$00011 \square 00101 \square 00110 \square 01001 \square 01010 \square 01100 \square 10100 \quad 10010 \square 10001 \square 11000 \square$

0000100010001000

00000

Take one (previously) good signal profile and let agents deliberate

${ }_{11111}$

00011 00101 00110 01001 01010 01100 10100 10010

00100
01000
10000

Take one (previously) good signal profile and let agents deliberate

After deliberation the majority opinion is wrong!

Take one (previously) bad signal profile and let agents deliberate

Take one (previously) bad signal profile and let agents deliberate

Take one (previously) bad signal profile and let agents deliberate

How often does this happen (on this graph)?

All good signal profiles on this graph

(4)

THEOREM
Group accuracy after deliberation via any graph G is never better than accuracy of direct voting.*

THEOREM

Group accuracy after deliberation via any graph G is never better than accuracy of direct voting.*

PROOF

In general, adding structure to the graph you might end up trading a good (under the empty graph) signal profile for another one with slightly lower probability.

CONDORCET
Ok, but can we at least recover some asymptotic results?

THEOREM
If G is a k-regular* graph on n nodes, with k even, group accuracy after deliberation via G approaches 1 in the limit, as n grows to infinity.

A wrong majority?

$W_{i}= \begin{cases}1, & \text { if } i \text { is wrong after deliberation }, \\ 0, & \text { otherwise }\end{cases}$

A wrong majority?

$W_{i}= \begin{cases}1, & \text { if } i \text { is wrong after deliberation }, \\ 0, & \text { otherwise }\end{cases}$

$$
\operatorname{Pr}\left[W_{\boldsymbol{i}}=1\right]=\boldsymbol{m}_{\boldsymbol{k}} \begin{gathered}
\text { Probability that a majority } \\
\text { ofk+1 signals are wrong }
\end{gathered}
$$

A wrong majority?

$$
W_{i}= \begin{cases}1, & \text { if } i \text { is wrong after deliberation } \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[W_{i}=1\right]=m_{k} \\
& \bar{W}=W_{1}+\cdots+W_{n}
\end{aligned}
$$

A wrong majority?

$$
W_{i}= \begin{cases}1, & \text { if } i \text { is wrong after deliberation } \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
\operatorname{Pr}\left[W_{i}=1\right]=m_{k} \\
\bar{W}=W_{1}+\cdots+W_{n} \\
\operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right]=?
\end{gathered}
$$

Chebyshev to the rescue

$$
\operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right]=\operatorname{Pr}\left[\bar{W}-n \cdot m_{k}>n \cdot\left(\frac{1}{2}-m_{k}\right)\right]
$$

Chebyshev to the rescue

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right] & =\operatorname{Pr}\left[\bar{W}-n \cdot m_{k}>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& =\operatorname{Pr}\left[\bar{W}-\mathbb{E}[\bar{W}]>n \cdot\left(\frac{1}{2}-m_{k}\right)\right]
\end{aligned}
$$

CHEBYSHEV
We need to get a bandle on $\bar{W}-\mathbb{E}[W]$.

THEOREM (CHEBYSHEV'S INEQUALITY)
If X is a random variable with finite expected value $\mathbb{E}[X]$ and variance $\operatorname{Var}[X]$, then, for any $a>0$, it holds that:

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}}
$$

THEOREM (CHEBYSHEV'S INEQUALITY)

If X is a random variable with finite expected value $\mathbb{E}[X]$ and variance $\operatorname{Var}[X]$, then, for any $a>0$, it holds that:

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}} .
$$

EXAMPLE

A fair coin is flipped 100 times. We want a bound on the probability that the number of heads is at least 60 , or at most 40 .
Take X to be the number of heads. Then, $\mathbb{E}[X]=50, \operatorname{Var}[X]=25$. And:

$$
\begin{aligned}
\operatorname{Pr}[X<40, X>60] & =\operatorname{Pr}[|X-\mathbb{E}[X]| \geq 10] \\
& \leq 25 / 10^{2} \\
& =1 / 4
\end{aligned}
$$

Chebyshev to the rescue

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right] & =\operatorname{Pr}\left[\bar{W}-n \cdot m_{k}>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& =\operatorname{Pr}\left[\bar{W}-\mathbb{E}[\bar{W}]>n \cdot\left(\frac{1}{2}-m_{k}\right)\right]
\end{aligned}
$$

Chebyshev to the rescue

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right] & =\operatorname{Pr}\left[\bar{W}-n \cdot m_{k}>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& =\operatorname{Pr}\left[\bar{W}-\mathbb{E}[\bar{W}]>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& <\frac{\operatorname{Var}[\bar{W}]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}}
\end{aligned}
$$

by Chebyshev's
inequality

Chebyshev to the rescue

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right] & =\operatorname{Pr}\left[\bar{W}-n \cdot m_{k}>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& =\operatorname{Pr}\left[\bar{W}-\mathbb{E}[\bar{W}]>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& <\frac{\operatorname{Var}[\bar{W}]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n} \operatorname{Var}\left[W_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[W_{i}, W_{j}\right]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}} \\
& =\frac{n \cdot m_{k}\left(1-m_{k}\right)+\sum_{i \neq j} \operatorname{Cov}\left[W_{i}, W_{j}\right]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}}
\end{aligned}
$$

Figuring out the covariance

If i and j share no neighbors the covariance is o.

Figuring out the covariance

If i and j share no neighbors the covariance is o.

The covariance gets larger the more neighbors i and j share.

Figuring out the covariance

If i and j share no neighbors the covariance is o.

The covariance gets larger the more neighbors i and j share.

The fraction of pairs of agents who share a neighbor goes to o as n goes to infinity.

Chebyshev to the rescue

$$
\begin{aligned}
\operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right] & =\operatorname{Pr}\left[\bar{W}-n \cdot m_{k}>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& =\operatorname{Pr}\left[\bar{W}-\mathbb{E}[\bar{W}]>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
& <\frac{\operatorname{Var}[\bar{W}]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}} \\
& =\frac{\sum_{i=1}^{n} \operatorname{Var}\left[W_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[W_{i}, W_{j}\right]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}} \\
& =\frac{n \cdot m_{k}\left(1-m_{k}\right)+\sum_{i \neq j} \operatorname{Cov}\left[W_{i}, W_{j}\right]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}}
\end{aligned}
$$

Chebyshev to the rescue

$$
\begin{aligned}
& \operatorname{Pr}\left[\bar{W}>\frac{n}{2}\right]=\operatorname{Pr}\left[\bar{W}-n \cdot m_{k}>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
&=\operatorname{Pr}\left[\bar{W}-\mathbb{E}[\bar{W}]>n \cdot\left(\frac{1}{2}-m_{k}\right)\right] \\
&<\frac{\operatorname{Var}[\bar{W}]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}} \\
&=\frac{\sum_{i=1}^{n} \operatorname{Var}\left[W_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[W_{i}, W_{j}\right]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}} \\
& \begin{array}{l}
\text { by Chebyshev's } \\
\text { inequality }
\end{array} \\
&=\frac{n \cdot m_{k}\left(1-m_{k}\right)+\sum_{i \neq j} \operatorname{Cov}\left[W_{i}, W_{j}\right]}{n^{2} \cdot\left(\frac{1}{2}-m_{k}\right)^{2}} \\
& \rightarrow 0, \text { as } n \rightarrow \infty
\end{aligned}
$$

This can be extended to graphs where the maximum degree is k.

Simulation results also look promising.

Random regular graphs

On random regular graphs, accuracy grows with k.

Group accuracy on random regular graphs as function of n for different values of k, with $p=0.6$

Erdős-Rényi random graphs

Group accuracy on Erdos-Renyi random graphs as function of n for different values of c, with $p=0.6$

In the $G(n, c)$ model, the choice of c influences group accuracy.

An interesting thing happens on random graphs.

Erdős-Rényi random graphs

Group accuracy on Erdos-Renyi random graphs as function of c for different values of n, with $p=0.6$

Can we be precise about the dip in accuracy?

Summing up.

For a fixed number of agents it seems that you can't do better than direct voting. :(

Ideally we can bound this loss of accuracy: what's the worst it can get?

GIUSEPPE
And, optimistically, we can recover the asymptotic result for k -regular graphs.

FREDERIK
Simulation results would give us an idea of interesting effects of the structure of the graph.

